
Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Determinacy in a synchronous π-calculus

Roberto M. Amadio

Université Paris Diderot, PPS, UMR-7126

Mehdi Dogguy

Université Paris Diderot, PPS, UMR-7126

Abstract

The Sπ-calculus is a synchronous π-calculus which is based on the SL

model. The latter is a relaxation of the Esterel model where the reac-

tion to the absence of a signal within an instant can only happen at

the next instant. In the present work, we present and characterize a

compositional semantics of the Sπ-calculus based on suitable notions

of labelled transition system and bisimulation. Based on this semantic

framework, we explore the notion of determinacy and the related one of

(local) confluence.1

1.1 Introduction

Let P be a program that can repeatedly interact with its environment.

A derivative of P is a program to which P reduces after a finite number

of interactions with the environment. A program terminates if all its

internal computations terminate and it is reactive if all its derivatives

are guaranteed to terminate. A program is determinate if after any finite

number of interactions with the environment the resulting derivative is

unique up to semantic equivalence.

Most conditions found in the literature that entail determinacy are

rather intuitive, however the formal statement of these conditions and

the proof that they indeed guarantee determinacy can be rather intricate

in particular in the presence of name mobility, as available in a paradig-

matic form in the π-calculus.

Our purpose here is to provide a streamlined theory of determinacy

for the synchronous π-calculus introduced in [2]. It seems appropriate

1 Work partially supported by ANR-06-SETI-010-02.

From Semantics to Computer Science Essays in Honour of Gilles Kahn, eds Yves

Bertot, Gérard Huet, Jean-Jacques Lévy and Gordon Plotkin. Published by Cambridge

University Press. c© Cambridge University Press 2009.

1

www.cambridge.org/9780521518253
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

2 R.M. Amadio and M. Dogguy

to address these issues in a volume dedicated to the memory of Gilles

Kahn. First, Kahn networks [14] are a classic example of concurrent and

deterministic systems. Second, Kahn networks have largely inspired the

research on synchronous languages such as Lustre [9] and, to a lesser

extent, Esterel [6]. An intended side-effect of this work is to illustrate

how ideas introduced in concurrency theory well after Kahn networks

can be exploited to enlighten the study of determinacy in concurrent

systems.

Our technical approach will follow a process calculus tradition, as

listed here.

(i) We describe the interactions of a program with its environment

through a labelled transition system to which we associate a compo-

sitional notion of labelled bisimulation.

(ii) We rely on this semantic framework, to introduce a notion of

determinacy and a related notion of confluence.

(iii) We provide local confluence conditions that are easier to check

and that combined with reactivity turn out to be equivalent to

determinacy.

We briefly trace the path that has led to this approach. A system-

atic study of determinacy and confluence for calculus of communicating

systems (CCS) is available in [17] where, roughly, the usual theory of

rewriting is generalized in two directions: first rewriting is labelled and

second diagrams commute up to semantic equivalence. In this context,

a suitable formulation of Newman’s lemma [19], has been given in [11].

The theory has been gradually extended from CCS, to CCS with values,

and finally to the π-calculus [20].

Calculi such as CCS and the π-calculus are designed to represent

asynchronous systems. On the other hand, the Sπ-calculus is designed

to represent synchronous systems. In these systems, there is a notion of

instant (or phase, or pulse, or round) and at each instant each thread

performs some actions and synchronizes with all other threads. One may

say that all threads proceed at the same speed and it is in this specific

sense that we will refer to synchrony in this work.

In order to guarantee determinacy in the context of CCS rendez-vous

communication, it seems quite natural to restrict the calculus so that

interaction is point-to-point, i.e., it involves exactly one sender and one

receiver.2 In a synchronous framework, the introduction of signal-based

2 Incidentally, this is also the approach taken in Kahn networks but with an interac-
tion mechanism based on unbounded, ordered buffers. It is not difficult to represent

www.cambridge.org/9780521518253
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Determinacy in a synchronous π-calculus 3

communication offers an opportunity to move from point-to-point to

a more general multi-way interaction mechanism with multiple senders

and/or receivers, while preserving determinacy. In particular, this is the

approach taken in the Esterel and SL [8] models. The SL model can be

regarded as a relaxation of the Esterel model where the reaction to the

absence of a signal within an instant can only happen at the next instant.

This design choice avoids some paradoxical situations and simplifies the

implementation of the model. The SL model has gradually evolved into a

general purpose programming language for concurrent applications and

has been embedded in various programming environments such as C,

Java, Scheme, and Caml (see [7, 22, 16]). For instance, the Reactive

ML language [16] includes a large fragment of the Caml language plus

primitives to generate signals and synchronize on them. We should also

mention that related ideas have been developed by Saraswat et al. [21]

in the area of constraint programming.

The Sπ-calculus can be regarded as an extension of the SL model

where signals can carry values. In this extended framework, it is more

problematic to have both concurrency and determinacy. Nowadays,

this question is frequently considered when designing various kind of

synchronous programming languages (see, e.g. [16, 10]). As we have

already mentioned, our purpose here is to address the question with the

tool-box of process calculi following the work for CCS and the π-calculus

quoted above. In this respect, it is worth stressing a few interesting

variations that arise when moving from the ‘asynchronous’ π-calculus to

the ‘synchronous’ Sπ-calculus. First, we have already pointed-out that

there is an opportunity to move from a point-to-point to a multi-way

interaction mechanism while preserving determinacy. Second, the notion

of confluence and determinacy happen to coincide while in the asyn-

chronous context confluence is a strengthening of determinacy which

has better compositionality properties. Third, reactivity appears to be a

reasonable property to require of a synchronous system, the goal being

just to avoid instantaneous loops, i.e. loops that take no time.3

The rest of the paper is structured as follows. In Section 1.2, we intro-

duce the Sπ-calculus, in Section 1.3, we define its semantics based on

unbounded, ordered buffers in a CCS with value passing and show that, modulo
this encoding, the determinacy of Kahn networks can be obtained as a corollary
of the theory of confluence developed in [17].

3 The situation is different in asynchronous systems where reactivity is a more
demanding property. For instance, [11] notes: “As soon as a protocol internally
consists in some kind of correction mechanism (e.g., retransmission in a data link
protocol) the specification of that protocol will contain a τ-loop”.

www.cambridge.org/9780521518253
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

4 R.M. Amadio and M. Dogguy

a standard notion of labelled bisimulation on a (non-standard) labelled

transition system and we show that the bisimulation is preserved by

static contexts, in Section 1.4 we provide alternative characterisations of

the notion of labelled bisimulation we have introduced, in Section 1.5, we

develop the concepts of determinacy and (local) confluence. Familiarity

with the π-calculus [18, 23], the notions of determinacy and confluence

presented in [17], and synchronous languages of the Esterel family

[6, 8] is assumed.

1.2 Introduction to the Sπ-calculus

We introduce the syntax of the Sπ-calculus along with an informal

comparison with the π-calculus and a programming example.

1.2.1 Programs

Programs P, Q, . . . in the Sπ-calculus are defined as follows:

P : : = 0 || A(e) || se || s(x).P, K || [s1 = s2]P1, P2 || [u ☎ p]P1, P2

|| νs P || P1 | P2

K : : = A(r)

We use the notation m for a vector m1, . . . , mn, n ≥ 0. The informal

behaviour of programs follows. 0 is the terminated thread. A(e) is a

(tail) recursive call of a thread identifier A with a vector e of expressions

as argument; as usual the thread identifier A is defined by a unique

equation A(x) = P such that the free variables of P occur in x. se

evaluates the expression e and emits its value on the signal s. s(x).P, K

is the present statement which is the fundamental operator of the SL

model. If the values v1, . . . , vn have been emitted on the signal s then

s(x).P, K evolves non-deterministically into [vi/x]P for some vi ([/] is

our notation for substitution). On the other hand, if no value is emitted

then the continuation K is evaluated at the end of the instant. [s1 =

s2]P1, P2 is the usual matching function of the π-calculus that runs P1 if

s1 equals s2 and P2, otherwise. Here both s1 and s2 are free. [u☎p]P1, P2,

matches u against the pattern p. We assume u is either a variable x or

a value v and p has the shape c(x), where c is a constructor and x is a

vector of distinct variables. We also assume that if u is a variable x then

x does not occur free in P1. At run time, u is always a value and we run

θP1 if θ = match(u, p) is the substitution matching u against p, and P2

if such substitution does not exist (written match(u, p) ↑). Note that as

www.cambridge.org/9780521518253
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Determinacy in a synchronous π-calculus 5

usual the variables occurring in the pattern p (including signal names)

are bound in P1. νs P creates a new signal name s and runs P . (P1 | P2)

runs in parallel P1 and P2. A continuation K is simply a recursive call

whose arguments are either expressions or values associated with signals

at the end of the instant in a sense that we explain below. We will also

write pause.K for νs s(x).0, K with s not free in K. This is the program

that waits till the end of the instant and then evaluates K.

1.2.2 Expressions

The definition of programs relies on the following syntactic categories:

Sig : : = s || t || · · · (signal names)

Var : : = Sig || x || y || z || · · · (variables)

Cnst : : = ∗ || nil || cons || c || d || · · · (constructors)

Val : : = Sig || Cnst(Val , . . . ,Val) (values v, v′, . . .)

Pat : : = Cnst(Var , . . . ,Var) (patterns p, p′, . . .)

Fun : : = f || g || · · · (first-order function symbols)

Exp : : = Var

|| Cnst(Exp, . . . ,Exp)

|| Fun(Exp, . . . ,Exp) (expressions e, e′, . . .)

Rexp : : = !Sig

|| Var

|| Cnst(Rexp, . . . ,Rexp)

|| Fun(Rexp, . . . ,Rexp) (exp. with deref. r, r′, . . .).

As in the π-calculus, signal names stand both for signal constants as

generated by the ν operator and signal variables as in the formal para-

meter of the present operator. Variables Var include signal names as

well as variables of other types. Constructors Cnst include ∗, nil, and

cons. Values Val are terms built out of constructors and signal names.

Patterns Pat are terms built out of constructors and variables (includ-

ing signal names). If P, p are a program and a pattern then we denote

with fn(P), fn(p) the set of free signal names occurring in them, respec-

tively. We also use FV (P),FV (p) to denote the set of free variables

(including signal names). We assume first-order function symbols f, g, . . .

and an evaluation relation ⇓ such that for every function symbol f and

values v1, . . . , vn of suitable type there is a unique value v such that

f(v1, . . . , vn) ⇓ v and fn(v) ⊆
⋃

i=1,...,n fn(vi). Expressions Exp are

terms built out of variables, constructors, and function symbols. The

evaluation relation ⇓ is extended in a standard way to expressions whose

www.cambridge.org/9780521518253
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

6 R.M. Amadio and M. Dogguy

only free variables are signal names. Finally, Rexp are expressions that

may include the value associated with a signal s at the end of the instant

(which is written !s, following the ML notation for dereferenciation).

Intuitively, this value is a list of values representing the set of values

emitted on the signal during the instant.

1.2.3 Typing

Types include the basic type 1 inhabited by the constant ∗ and, assum-

ing σ is a type, the type Sig(σ) of signals carrying values of type σ,

and the type List(σ) of lists of values of type σ with constructors

nil and cons. In the examples, it will be convenient to abbreviate

cons(v1, . . . , cons(vn, nil) . . .) with [v1; . . . ; vn]. 1 and List(σ) are exam-

ples of inductive types. More inductive types (booleans, numbers,

trees,. . .) can be added along with more constructors. We assume that

variables (including signals), constructor symbols, and thread identifiers

come with their (first-order) types. For instance, a function symbols f

may have a type (σ1, σ2) → σ meaning that it waits two arguments

of type σ1 and σ2, respectively, and returns a value of type σ. It is

straightforward to define when a program is well-typed. We just point

out that if a signal name s has type Sig(σ) then its dereferenced value

!s has type List(σ). In the following, we will tacitly assume that we are

handling well typed programs, expressions, substitutions,

1.2.4 Comparison with the π-calculus

The syntax of the Sπ-calculus is similar to the one of the π-calculus,

however, there are some important semantic differences that we highlight

in the following simple example. Assume v1 �= v2 are two distinct values

and consider the following program in Sπ:

P = ν s1, s2

(

s1v1 | s1v2 |

s1(x). (s1(y). (s2(z). A(x, y) , B(!s1)) , 0) , 0

)

If we forget about the underlined parts and we regard s1, s2 as channel

names then P could also be viewed as a π-calculus process. In this case,

P would reduce to

P1 = νs1, s2 (s2(z).A(θ(x), θ(y))

www.cambridge.org/9780521518253
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Determinacy in a synchronous π-calculus 7

where θ is a substitution such that θ(x), θ(y) ∈ {v1, v2} and θ(x) �= θ(y).

In Sπ, signals persist within the instant and P reduces to

P2 = νs1, s2 (s1v1 | s1v2 | (s2(z).A(θ(x), θ(y)), B(!s1)))

where θ(x), θ(y) ∈ {v1, v2}. What happens next? In the π-calculus, P1 is

deadlocked and no further computation is possible. In the Sπ-calculus,

the fact that no further computation is possible in P2 is detected and

marks the end of the current instant. Then an additional computation

represented by the relation
N
−→ moves P2 to the following instant:

P2
N
−→ P ′

2 = νs1, s2 B(v)

where v ∈ {[v1; v2], [v2; v1]}. Thus at the end of the instant, a

dereferenced signal such as !s1 becomes a list of (distinct) values emitted

on s1 during the instant and then all signals are reset.

1.2.5 A programming example

We introduce a programming example to illustrate the kind of

synchronous programming that can be represented in the Sπ-calculus.

We describe first a ‘server’ handling a list of requests emitted in the

previous instant on the signal s. For each request of the shape req(s′, x),

it provides an answer which is a function of x along the signal s′.

Server(s) = pause.Handle(s, !s)

Handle(s, ℓ) = [ℓ ☎ req(s′, x)::ℓ′](s′f(x) | Handle(s, ℓ′)),Server(s) .

The programming of a client that issues a request x on signal s and

returns the reply on signal t could be the following:

Client(x, s, t) = νs′ (sreq(s′, x) | pause.s′(x).tx, 0) .

1.3 Semantics of the Sπ-calculus

In this section, we define the semantics of the Sπ-calculus by a ‘standard’

notion of labelled bisimulation on a ‘non-standard’ labelled transition

system and we show that labelled bisimulation is preserved by ‘static’

contexts. A distinct notion of labelled bisimulation for the Sπ-calculus

has already been studied in [2] and the following Section 1.4 will show

that the two notions are (almost) the same. A significant advantage of

the presentation of labelled bisimulation we discuss here is that in the

‘bisimulation game’ all actions are treated in the same way. This allows

www.cambridge.org/9780521518253
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 R.M. Amadio and M. Dogguy

for a considerable simplification of the diagram chasing arguments that

are needed in the study of determinacy and confluence in Section 1.5.

1.3.1 Actions

The actions of the forthcoming labelled transition system are classified

in the following categories:

act : : = α || aux (actions)

α : : = τ || νt sv || sv || N (relevant actions)

aux : : = s?v || (E, V) (auxiliary actions)

μ : : = τ || νt sv || s?v (nested actions)

The category act is partitioned into relevant actions and auxiliary

actions.

The relevant actions are those that are actually considered in the

bisimulation game. They consist of: (i) an internal action τ ; (ii) an emis-

sion action νt sv where it is assumed that the signal names t are distinct,

occur in v, and differ from s; (iii) an input action sv; and (iv) an action

N (for Next) that marks the move from the current to the next instant.

The auxiliary actions consist of an input action s?v which is coupled

with an emission action in order to compute a τ action and an action

(E, V) which is just needed to compute an action N . The latter is

an action that can occur exactly when the program cannot perform τ

actions and it amounts (i) to collect in lists the set of values emitted on

every signal, (ii) to reset all signals, and (iii) to initialize the continuation

K for each present statement of the shape s(x).P, K.

In order to formalize these three steps we need to introduce some

notation. Let E vary over functions from signal names to finite sets of

values. Denote with ∅ the function that associates the empty set with

every signal name, with [M/s] the function that associates the set M

with the signal name s and the empty set with all the other signal names,

and with ∪ the union of functions defined point-wise.

We represent a set of values as a list of the values contained in the

set. More precisely, we write v ‖−M and say that v represents M if

M = {v1, . . . , vn} and v = [vπ(1); . . . ; vπ(n)] for some permutation π over

{1, . . . , n}. Suppose V is a function from signal names to lists of values.

We write V ‖−E if V (s) ‖−E(s) for every signal name s. We also write

dom(V) for {s | V (s) �= []}. If K is a continuation, i.e. a recursive call

A(r), then V (K) is obtained from K by replacing each occurrence !s of

www.cambridge.org/9780521518253
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Determinacy in a synchronous π-calculus 9

a dereferenced signal with the associated value V (s). We denote with

V [ℓ/s] the function that behaves as V except on s where V [ℓ/s](s) = ℓ.

With these conventions, a transition P
(E,V)
−−−−→ P ′ intuitively means

that (1) P is suspended, (2) P emits exactly the values specified by E,

and (3) the behaviour of P in the following instant is P ′ and depends

on V . It is convenient to compute these transitions on programs where

all name generations are lifted at top level. We write P
 Q if we can

obtain Q from P by repeatedly transforming, for instance, a subprogram

νsP ′ | P ′′ into νs(P ′ | P ′′) where s /∈ fn(P ′′).

Finally, the nested actions μ, μ′, . . . are certain actions (either relevant

or auxiliary) that can be produced by a sub-program and that we need

to propagate to the top level.

1.3.2 Labelled transition system

The labelled transition system is defined in Table 1.1 where rules

apply to programs whose only free variables are signal names and with

standard conventions on the renaming of bound names. As usual, one

can rename bound variables, and the symmetric rules for (par) and

(synch) are omitted. The first 12 rules from (out) to (νex) are quite close

to those of a polyadic π-calculus with asynchronous communication (see

[4, 12, 13]) with the following exception: rule (out) models the fact that

the emission of a value on a signal persists within the instant. The last

five rules from (0) to (next) are quite specific of the Sπ-calculus and

determine how the computation is carried on at the end of the instant

(cf. discussion in Section 1.3.1).

The relevant actions different from τ , model the possible interactions

of a program with its environment. Then the notion of reactivity can be

formalized as follows.

Definition 1.1 (derivative) A derivative of a program P is a program

Q such that

P
α1−→ · · ·

αn−−→ Q, where: n ≥ 0 .

Definition 1.2 (reactivity) We say that a program P is reactive, if

for every derivative Q every τ -reduction sequence terminates.

www.cambridge.org/9780521518253
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-51825-3 — From Semantics to Computer Science
Edited by Yves Bertot , Gérard Huet , Jean-Jacques Lévy , Gordon Plotkin
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

10 R.M. Amadio and M. Dogguy

Table 1.1. Labelled transition system.

(out)
e ⇓ v

se
sv
−→ se

(inaux)
s(x).P, K

s?v
−−→ [v/x]P

(in)
P

sv
−→ (P | sv)

(rec)
A(x) = P, e ⇓ v

A(e)
τ
−→ [v/x]P

(=sig
1)

[s = s]P1, P2
τ
−→ P1

(=sig
2)

s1 �= s2

[s1 = s2]P1, P2
τ
−→ P2

(=ind
1)

match(v, p) = θ

[v ☎ p]P1, P2
τ
−→ θP1

(=ind
1)

match(v, p) =↑

[v ☎ p]P1, P2
τ
−→ P2

(comp)
P1

µ
−→ P ′

1

bn(µ) ∩ fn(P2) = ∅

P1 | P2
µ
−→ P ′

1 | P2

(synch)

P1
νt sv
−−−→ P ′

1

P2
s?v
−−→ P ′

2

{t} ∩ fn(P2) = ∅

P1 | P2
τ
−→ νt (P ′

1 | P ′
2)

(ν)
P

µ
−→ P ′ t /∈ n(µ)

νt P
µ
−→ νt P ′

(νex)

P
νt sv
−−−→ P ′ t′ �= s
t′ ∈ n(v)\{t}

νt′ P
(νt′,t)sv
−−−−−→ P ′

(0)
0

∅,V
−−→ 0

(reset)
e ⇓ v v occurs in V (s)

se
[{v}/s],V
−−−−−−→ 0

(cont)
s /∈ dom(V)

s(x).P, K
∅,V
−−→ V (K)

(par)
Pi

Ei,V
−−−→ P ′

i i = 1, 2

(P1 | P2)
E1∪E2,V
−−−−−−→ (P ′

1 | P ′
2)

(next)
P 	 νs P ′ P ′ E,V

−−→ P ′′ V ‖−E

P
N
−→ νs P ′′

1.3.3 A compositional labelled bisimulation

We introduce first a rather standard notion of (weak) labelled

bisimulation. We define
α
⇒ as:

α
⇒=











(
τ
−→)∗ if α = τ

(
τ
⇒) ◦ (

N
−→) if α = N

(
τ
⇒) ◦ (

α
−→) ◦ (

τ
⇒) otherwise

This is the standard definition except that we insist on not having

internal reductions after an N action. Intuitively, we assume that an

www.cambridge.org/9780521518253
www.cambridge.org

