Index

accumulation of outer layer of billet in discard, 322
adaptive remeshing, 223
adhesion of lubricant to workpiece, 146
advantage and disadvantage of backward extrusion, 24, 324
allotropic behavior of steel, 118
analogy, between stress and strain, 62, 66
anisotropy
 factor of, 442
 measurement, 443
 normal, 443
 planar, 443
 in sheet-metal, 442
 in worked metals, 7
area reduction, 77
aspect ratio in
 cylinder compression, 81
 plain strain compression, 35
asperity, 141
plastification, 142
atoms, packing of, 3
austenite, 118
average
 length strain, 78
 pressure in frictionless compression, 81
axi-symmetric FEM model, 225
back-pull in wire drawing, 398
backward cup extrusion
 effective strain rate distribution, 286
 effective strain distribution, 288
 FEA of process, 285–301
balanced biaxial stretching, 438
barreling of cylinder in compression, 108
bearing in wire drawing dies, 399
bend allowance, 447
bending, 28
 of sheet-metal, 439
 biaxial stretching, 438
billet, 22
 removal without deformation, 350
blank holder, 27, 444
blanking, 30
 conventional, 30
 fine, 30
blister defect, 323, 331
bloom, 22
bottleneck in forming, 12
boundary
 film lubrication, 146, 147–149
 lubrication, 146
boundary conditions in FEA, 224
breakdown of material, 127
due to cracking, 134
breakdown of
 cast microstructure, 4
 lubricant film, 13
Bridgman’s
 assumptions in necking analysis, 243
 correction factor in tensile testing, 105
 theoretical analysis of, 104
buckling, 19
 in deep-drawing, 444
bulging in
 cylinder compression, 108
 wire drawing, 417, 418
bulk metal forming, 9, 18
burp cycle, 332
calibration draw, 395
capstan, 396
casting
 defect formation, 5
 material loss, 5
cast iron, 3
cavity filling, 268
cementite flakes, 2, 3
center bursts, 421
center zone in plain strain compression, 41
cermets, 398
material model, 115
chevron cracks, 421
growth in FEA, 423
circle grid analysis, 435, 436
to determine strains, 68
classification system
extrudability of Al-alloys, 335
extrusion processes, 10
metal forming, 9, 18
shapes of Al-profiles, 334
shapes of forgings, 271, 272
subdivision metal forming processes, 10
types of metal flow in extrusion, 326
clay, deformation of, 1
def ormation mechanism, 3
clean cut in shearing, 30
cleaning, of surfaces, 144
closed die forging, 20–21
die filling in, 302
example of laboratory process, 302
FEA of, 302–316
optimized process, 279
Cockroft-Latham failure criterion, 134
coefficient of friction, 142
cogging, 20
coeiling of wire, 396
cold drawing of wire, 27
cold forming
cold working by wiredrawing, 27
to gain high strength, 7
temperature range of, 118
vs. hot forming, 34
complex strain path in sheet-metal forming, 437
compression
axial, 87
homogeneous slab, 87
re retarded stroke for constant strain rate, 108
compression testing, advantages over tensile testing, 95
c ompressive stress
on inside of bend, 439
in wiredrawing die, 398
cone angle in wiredrawing, 400
confinement of air in extrusion material, 332
constancy of volume, 63
de viation from rule of, 64
constitutive equation
definition, 115
in cold forming, 118
gen eral expression, 117
in hot forming, 122
including microstructural mechanisms, 122
metals in general, 115–118
contact angle in rolling, 370
contact area
apparent area, 141
in compression, 107
real area, 141
contact conditions between
billet and container, in extrusion, 351
roll and workpiece, in rolling, 365
contact mechanisms, workpiece-die, 143
contact pressure against die as process parameter, 14
contact pressure against die in
cylinder compression, 230–233
deep drawing, 27
from the slab method, 373
light slab rolling, 380
normal slab rolling, 387
normal wiredrawing, 427
strip rolling, 391
wiredrawing, 400
contact zone against
die in closed-die forging, 302–305
contamination
as subsurface defect in extrusion, 330
of surfaces, 144
continuous casting, 22
continuum
mechanics, 2
medium, 2
converging channel of wiredrawing die, 399
conversion coating, 308
cooling
effects, 159, 162
of plate against die, 163–164
copper wiredrawing, 414
Coulomb friction
model, 140–142
validity of model, 142
 cracking, 127
due to lamination, 8
in cylinder bulge, 134, 136
in shear, 136
transverse cracking in extrusion, 134
critical blank size in deep-drawing, 444
crystals, aggregate of, 3
cup forming by deep drawing, 27
curve fitting
applied for the flow stress, 118
determination of constants, 119
cutting, 10
cylinder compression
basic mechanics of test method, 106
compression velocity, 106
deformation in corner of bulge, 252
deformations in compression test, 253–254
dies applied in test, 106
experimental set-up, 106
FEA of test, 229
flow curve in test, 107
with friction, 108
friction effects, 199
friction measurement using pins, 153–154
frictionless compression, 1
homogeneous compression, 107, 251
Index

principal stress in frictionless case, 210
reduced friction in test, 109
strain rate field in frictionless case, 210
as technological test, 93, 95
velocity field in frictionless case, 209
damage parameter in
light slab rolling pass, 381
normal slab rolling pass, 386
normal wire-drawing from FEA, 427
plain strain compression, 47
small reduction, large cone angle wire-drawing, 421
strip rolling pass, 392
wire-drawing, 421
damage parameter, critical value, 134
dead zone in
backward cup extrusion, 286
cylinder compression, 109
extrusion, 183, 322
plain strain compression, 41
strip rolling, 390
deep drawing, 27
applied tooling, 27
fracture in, 28
of rectangular cup, 440
of round cup, 440
of sheet-metal, 439
wrinkling, 28
defects
avoid defects because of economy, 14
blisters in extrusion, 323
of critical size, 130
in forging, 279
hot tearing in Al-extrusion, 159
DEFORM®-code, 223
FEM-approach used, 224
deformation
comparison of compression and tension, 59
over edge of plain strain compression die, 44
effect of varying clearance in shearing, 260–263
elastic, 1
energy, 160
fluctuations in wire-drawing, 417
homogeneity in cylinder compression, 108
homogeneity in extrusion seam, 238
of inhomogeneous nature, 2
macroscopic, 2
mapping of, 2
mechanism of, 4
microscopic, 3
multiplication of deformation crosses, 46
near punch in backward cup extrusion, 296
patterns in wire-drawing, 431
of permanent character, 116
plastic, 1
simple measure of total deformation, 77
deformation analysis, 40–46
deformation characteristics of extruded rod, 192
deformation cross in
normal wire-drawing, 424
plain strain compression, 44
strip rolling, 390
cylinder compression, 253
deformation from
dehormed grid pattern, 182
effective strain distribution, 43
effective strain rate distribution, 43
grid pattern in backward extrusion, 290–292
strain rate distribution in wire-drawing, 425
velocity field, 85–87
deformation in
backward cup extrusion, 286
deep-drawing, 440
extruded rod from grid pattern, 192–195
extruded rod, 361
extrusion, 24
extrusion billet from strain rate, 362
front end of extruded rod, 322
hot closed die forging, 310–314
light pass slab rolling, 377, 379
neck from circle pattern, 247
necking section, 243
neck in tensile test, 103
normal pass slab rolling, 383
plain strain compression test, 40–46
shearing, 30, 259
sheet-metal forming, 438
strip rolling, 389
wire-drawing, low reduction – large angle, 416
wire-drawing, normal drawing geometry, 425
degree of reduction, 79
deletion of FEM-mesh to model cracking, 422
\(\Delta\)-parameter, 81
in plain strain compression, 36
in rolling, 376
in strip rolling, 393
in wire-drawing, 403, 414
in Wistreich’s wire-drawing experiments, 414
diamond in wire-drawing die, 398
die bridge in extrusion, 333
die cavity, 20
die filling in closed-die forging, 277, 302
die geometry, characteristic parameters, 400
die-life, influenced by fatigue, 142
die orifice, 23
dies
in metal forming, 13
wear of, 13
die splitting force in
strip drawing, 149
wire-drawing, 401, 414
diffuse necking, 131
dimensional stability in drawing, 395
direct contact between surfaces, 144
directionally oriented microstructure, 442
discard in extrusion, 321, 323
removal of, 324
dislocation, 3
density, 3
movement, 3
dislocation networks in cold and hot forming, 122
displacement components, 86
division processes, shearing, 30
draft in rolling, 383
drawing
as continuous process, 396
as discontinuous process, 396
of strip, 64
unit in wiredrawing machine, 397
wheel, 396
drawing cell in drawing machine, 398
drawing conditions in normal wiredrawing, 424
ductility, 128
increase through metal working, 7
earing
factors influencing earing, 447
phenomenon in deep-drawing, 446
ease of working, 128
economy in metal forming, 14
edges for cutting, 30
effective strain distribution, plain strain compression, 43
effective strain rate distribution, plain strain compression, 43
elastic
layer in bend, 440
zone, 191
elastic deformation
of dies, 53
in tensile test, 102
elasticity theory, 53
elastic-plastic
materials, 116
emitivity, 164
emptying diagram
in backward cup extrusion, 296
concept, 195
in extrusion made by FEA, 359
emptying line
longitudinal, 199
transverse, 197
energy consumption
definition of, 69
in extrusion, 325
friction energy, 406
for homogeneous deformation, 405
for inhomogeneous deformation, 407–409
total in wiredrawing, 405, 409
energy dissipation, 69
entrance into roll gap, 376
equation to find friction in split die experiment, 401
Erichsen-test, 438
Eulerian description, 222
eutectic phases, as contamination in extrusion, 324
excessive stresses in sheet-metal forming, 441
experiments to validate FEM analysis, 35
explicit FEM-method, 222
exponent of strain hardening, 118
extrudability of
Al, 25
Al-alloys, 335
extrudate, 320
extruded profiles, 23
extrusion, 23–26, 320
advantage of direct over indirect, 24
backward process, 23
billet, 23
classification of processes, 10
complex hollow profile extrusion, 25
container, 23
do of copper and brass, 24
defect, 331
direct process, 23
division into subprocesses, 326, 347
flow of outer layer of billet, 24
force, 337
force against container wall, 338
forward process, 23
friction force, 341
homogeneous deformation force, 341
hot extrusion of Al, 322
hot lubricated, 25
indirect process, 23
inhomogeneous deformation force, 342
limitations in backward extrusion, 24
of light metals, 24
load in backward extrusion, 325
metal flow in direct and indirect process, 24
in multi-hole dies, 24
peripheral billet layer, 24
practice in forward extrusion, 323
pressure, 337
pressure welding, 25
punch, 23
ram, 23
residue, 321, 323
seam welds, 26
shell extrusion, 24
of steel, 25
tooling in porthole die extrusion, 25
total force, 337, 343
welding, 26
welding, FEM-model of, 233–238
welding chamber, 25
failure
criteria, 134
catastrophic, 130
FEA
correction of flow curve, 245–246
to determine thermal effects, 168–173
general, 220
general importance in metal forming, 221
graphical presentation of results, 229
results as parameter distribution, 229
FEM-codes
development of, 221
to model metal forming, 223
FEM model, 2D
backward Al-extrusion, 358–362
backward cup extrusion, 285–301
extrusion welding, 237–238, 333
forward Al-extrusion, 352–357
forward extrusion, subprocesses, 347–349
plain strain compression, 225, 226
shearing, deformations in sheared layer, 257–263
shearing, to find K and n, 264–265
slab rolling pass, 376–393
tensile test, formability consideration, 130–131
tensile testing, risk of cracking, 135–136
tensile testing, stress conditions in neck, 243–246
wiredrawing, 415–431
FEM model, 3D
closed-die forging, 302–316
cylinder compression, 253
extrusion welding, 233–237
plain strain compression, 37–50
tensile testing, necking, 247
FEM-modeling, in general, 220
FEM-solver, 224
ferrite, 2, 118
finished product, 13
finishing die, 274
finite difference method, 204
finite element analysis (FEA), 34
validation of, 35
finite element method (FEM), 34
finite elements, 221
flash, 21
formation of, 4
flash gap, 277
characteristic geometrical conditions, 281
common designs, 281
design rules in closed-die forging, 280
flash less forging, 20
flat rolling, 22
flat-faced die, in extrusion, 322
FLD-diagram, 130, 441
flow criteria, the von Mises and Tresca criterion, 111
flow criterion, correctness of, 38
flow curve, 116
determination in cold forming, 107
determination curve in hot forming, 107
from tensile test, 102
true and nominal curve, 103
flow direction of outer layer of billet in extrusion, 331
flow formulation, 222
flow patterns in extrusion, 326–328
flow rule of Lévy-Mises, 73
flow stress
of Al-alloys in bending experiments,
in cold, warm, and hot forming, 115, 116
from compression test, 107
of copper wire, 117, 416
general function, 118
to get right metal flow in Al-extrusion, 353
mean value of in wiredrawing, 405
parameter influence, 116
as process parameter, 14
from shearing test, 263–265
temperature dependence, 117
variation due to microstructure, 118
flow types in extrusion, 190
foil, 442
folds, 279
force
on the roll, 367
total force in wiredrawing, 399
forgeability, 269
of different metals, 270
forging
as a requirement, 7
avoiding unsound grain flow, 8
as nonstationary process, 85
deformation in hot closed die forging, 310–314
design of multistep series, 274–276
design principles, 276
design to avoid defects, 280
to improve fatigue resistance, 8
mass distribution principle in, 276
optimum temperature, 269
stock, 274
typical multi-step forging sequence, 275
forgings
complexity of, 271
shapes difficulty to forge, 272
formability, 127
to avoid defect formation, 14
improvements in deep-drawing, 442
limits, 441
of metals in deep-drawing, 446
parameter in deep-drawing, 445
parameter in stretch forming, 445
forming under
compressive stress, 9, 18
tensile stress, 9, 18
fracture, 127
elongation, 94, 103
in forgings due to defects, 280
in shear, 138
strain, 94, 103
free forming, 19
friction
in backward cup extrusion, 300
Causing load increase in bending, 216
determination in plain strain compression, 37
dry friction, 144–145
effects in metal forming, 139
effects on flow curve from compression, 254
energy dissipation, 162
factor, 143
force, 141
force as process parameter, 14
heating, 161
hill, 208
influence on forming load, 139
measurement in forming, 149–155
measurement in wire drawing, 400
measurement using pins, 152
shear stress, 142
shear stress in wire drawing, 400
from surface ring pattern, 199
friction coefficient, 142
value, boundary film lubrication, 148
value, hydrodynamic lubrication, 147
frictionless compression, average pressure vs. Δ, 81
friction models, 140
comparison of models, 143
implementation of in FEM-codes, 229
full separation of contact surfaces, 144
fusion welding, 26
general extrusion, part of extrusion process, 349
generic deformation modes in sheet-metal forming, 439
Gleeble simulator, 96
testing, 35
working principle of simulator, 96
grain
boundaries, 2
as crystals, 3
flow in forgings, 8
graphical tools in FEM analysis, 224
grid pattern analysis
in compression experiment, 249
deformation of grid elements, 41
in extrusion welding, 237
in FEA of compression, 250
in shearing experiment, 259
grid pattern distortions in backward Al-extrusion, 359
light slab rolling pass, 379
normal slab rolling pass, 385
normal wiredrawing, 426
strip rolling pass, 390
wiredrawing, small reduction, large cone angle, 418
grid pattern technique, 2, 181
appearance of grid, 182
advantage of pattern from pins, 184
in backward extrusion of Al cup, 290–292, 357
contrast materials, 184
deformed pattern in extrudate, 183, 188
identification of grid elements, 186, 189
intrinsic pattern, 184
making pattern from contrast pins, 184, 185
notation to identify grid lines, 186
parting agent to avoid welding, 182
perfect deformed pattern in Al-extrusion, 187
in plain strain compression, 36
scratched patterns, 181
hardness testing
contact pressure, 82
indenter, 93
test method, 93
heat
capacity, 160
effects, 159
transfer coefficient, 163
height strain, 80
height-to-diameter-ratio, in cylinder compression, 80
Hensel-Spittel constitutive equation, 118
high-strain-rate zone in normal wiredrawing, 424
plain strain compression, 45
rolling, 377
wiredrawing, 416
hollow
extrusion dies, 25
profile extrusion, 333
homogeneous deformation in cylinder compression, 109
Hooke's law, 73, 115
hot forming
temperature range of, 118
vs. cold forming, 34
hot tearing, 159
mechanism in Al-extrusion, 178
hottest spot in Al-extrusion die, 178
hydra-wedge for multistep compression, 98
hydrostatic extrusion, 322
ideal work method, 204
impact extrusion, 21
backward method, 21
forward method, 21
implicit FEM-method, 222
inclusions, of MnS, 7
incremental strain from velocity field, 85
index notation for stress tensor, 55
inferior properties due to lamination, 8
inhomogeneous deformation in cylinder compression, 109
light slab rolling pass, 379
normal slab rolling pass, 383
normal wiredrawing from FEA, 425
strip rolling pass, 390
inserts, used in wiredrawing dies, 398
instability, 18
causing necking, 131
criterion for start of necking, 104
in high slender cylinder compression, 95
in tensile testing, 103
integrity of materials, 128
interface between die and workpiece, 13
intrinsic ductility, 128
inverse modeling, 37
determine flow curve in tensile testing, 246
determine friction in backward cup extrusion, 299–301
inverse parameter identification to determine friction, 37
get right localized shear, 37
inverse segregation in extrusion billet, 324
inward compression, part of extrusion process, 349
isothermal FEM model, 225
isotropic materials, 63
isotropy of sheet-metal, 442
joining of metal streams in extrusion, 25
processes, 9
Lagrangian description, 222
lamination, 8
in extrusion, 321
laps, 279
largest principal stress in normal wiredrawing, 427
layered appearance, 8
length strain, transformed to reduction of area, 79
Lévy-Mises flow rule, 73
limiting draw ratio, LDR in deep-drawing, 444
load-stroke curve
cylinder compression, 107
extrusion, 325
forging, 277
optimized curve in closed-die forging, 315
localized necking, 94, 131
logs of AI, 24
loss of material, 4
low-cycle fatigue of dies, 142
lubricant, 13
thick lubricant film through wedge effect, 147
viscosity of, 147
lubricated extrusion, 322
lubrication
boundary film, 147
boundary films in, 148
in drawing, 397
in forging, 271
glass in extrusion, 25
hydodynamic, 146–147
mechanisms, 144
Ludvig's law, 119
machines, used in metal forming, 13
maching
material removal, 6
macro etching, 8
malleability, 128, 269
manufacturing
cheapest process, 7
classification system, 9
comparison of processes, 4
methods, 1
of rod and wire, 26
mass production, 6
material
failure in forming, 127
flow phenomena in wiredrawing, 431
inhomogeneity on micro-scale, 3
loss, 4
loss reduction in forging, 314
models implemented in FEA, 227
removal, 4
matte surface, hydrodynamic lubrication, 146
maximum principal stress to explain chevron cracking, 423
mean through thickness strain rate in rolling, 370
measurement techniques applied in Al-extrusion, 175
mechanical properties
improved by forming, 4
of a material, 103
of finished product, 15
mechanical working to gain high strength, 7
mechanism of chevron crack formation, 422
metal flow analysis, 181
metal flow in
direct compared to indirect extrusion, 195
Al-extrusion from FEA, 354
extrusion, 326–328
in FEA, validated experimentally, 354
idealized 2D extrusion welding, 235
unlubricated direct extrusion, 189–191
metal forming
characteristics of, 4
classification system, 9
definition of, 1
overview of processes, 10
requirements for sound process economy, 13
simulator, 93
stable process, requirement, 7, 13
metal removal processes, 9
by shearing, 30
metallic bond formed in extrusion welding, 334
mixed lubrication, 149
modeling techniques
description of methods, 220
goal for performing engineering analysis, 219
model material, 181
Mohr’s circle, 56
sign convention, 57
for strains, 62
multistep
forming, 19, 98
wiredrawing, 398
near net shaping, 20
neck
average axial stress in, 105
as defect in sheet metal forming, 103
formation, 18
growth in tensile testing, 102
radius of curvature in, 105
tri-axial stress state in, 104
necking
failure in sheet-metal forming, 130, 441
FEM model of, 130
instability in, 94
localized, 131
in tensile testing, 94, 102, 130
neutral plane in
bending, 439
plane strain compression, 34
neutral point in rolling, 367
node in FEM-mesh, 221
nominal strain from
circle grid analysis, 437
tensile test, 102
nominal stress from tensile test, 101
nonstationary processes, 84
normal stress, definition of, 53
Northon-Hoff constitutive equation, 118
numerical modeling, 220
open die forging, 19–20
optimum die cone angle in wiredrawing, 411
origin inside billet of surface layer of rod, 195
outer billet layer, outflow of in extrusion, 329–331
out of the plane stretching, 438
overfolding, 279
in extrusion, 329
overloading of tools, 53
oxide layer, 144
oxide layer on
Al, 145
Al, oxide effect on emissivity, 165
Cu, 145
particle paths, 85
in wiredrawing, 429
pearlite, 2
peripheral billet skin, flow of in extrusion, 328
physical
in big WUMSI simulator, 98
metal forming simulation, 35
modeling, 37, 96–101
modeling techniques, 220
simulation, 92, 96
pinching, part of extrusion process, 349
pin measurement of friction, 149
pipe, defect in extrusion, 181, 331
plain strain compression
applied to sheet metals, 109
average contact pressure in, 111
effective strain in, 111
effective stress in, 111
inside channel-shaped die, 95
maintain ideal conditions 35, 109, 111
mechanics of ideal test, 110
relative contact pressure in, 82
technological test, 34, 93, 95
test to mimic rolling, 109
thermal effects in test, 227
thickness strain in, 111
with overhanging platens, 96
plain strain
tensile test, 436
FEM model, 225
plastic
constraint in plain strain compression, 110
straining, 4
yield, 70, 116
plasticity theory, 53
plastic zone, 12
geometrical shape of, 81
in backward cup extrusion, 286
in normal wiredrawing, 424
in wiredrawing, 400, 416
plastification, 4, 53
of forming dies, 142
plate material, 442
pointing of wire or rod before drawing, 396
point-tracking, in FEA to trace metal flow, 361
polymers
deformation mechanism, 3
deformation of, 1
porthole die extrusion, 25, 333
postprocessing results in plain strain compression, 40–50
postextrusion deformation, avoiding phenomenon, 351
postprocessing, 224
power law
cold forming, 119
hot forming, 122
power of deformation, 70
Prandtl-Reuss equations, 222
precision forging, 20
predeformation of back end of billet, 193, 328
preforming in forging, 274
preform optimization in closed-die forging, 314
preprocessing, 224
prescribed circumference of extruded profile, 24
pressure
through boundary interface, 141
distribution against die in wiredrawing, 420
pad, 321
peak in friction hill in wiredrawing, 420
peak in friction hill in rolling, 380
welding, 26
welding in extrusion, 334
welding onto the die, 13
primary
dead zone in extrusion, 191, 356
deformation zone (extrusion), 190, 322, 356
shear zone in extrusion, 356
principal strains from circle grid analysis, 437
principal stress
definition of, 55
distribution of parameter in neck, 243
largest value in light slab rolling pass, 382
largest value in normal slab rolling pass, 386
in plain strain compression, 48
problem areas, in forming, 12
process parameters, 14
importance of, 14
in metal forming, 14
product in forming, 13
production processes
characteristics of, 6
select the best process, 6
production in low numbers, 6
productivity, high level of, 13
profile drawing, 386
projected length of arc of contact, 368, 372
punch load, friction effects in backward cup
extrusion, 296
pure shear in torsion test, 111
pyrometry, 159, 164
radial compression, part of the extrusion process, 349
radiation of heat, 159
Ramberg-Osgoods equation, 119
recovery, 122
recrystallization, 7, 122
redefined strain in compression, 80
reduction ratio
definition of, 77
in extrusion, 79
reduction in
percent, 79
wiredrawing, 399, 403
remeshing, 223
to get good FEM mesh, 223
removal of material, 4
results of FEM-analysis, 224
retention of peripheral layer of billet, 191, 327
rigid-plastic materials, 116
rigid zone, 42
ring compression test, 149–152
measurement technique, 149
ring proportions, 151
riser, in casting, 5
rod, drawing of, 27, 395
roll
force equation, 367
forging, 275
gap, 366
rolling
force, 367
problem areas, 12
processes, 22–23
schedule, 23
sawing to make workpiece, 7
scaling defect in extrusion, 330
scalping operation in extrusion, 324
scraping of ram against container, 193
scraping of ram head against container wall, 328
part of extrusion process, 349
scratching
at rear end of container, 351
part of extrusion process, 349
secondary
dead zone, 191
deformation zone, 190, 322
shear zone, in extrusion, 356
section rolling, 22
security components, 6, 302
seizure of workpiece in rolling, 376
selection of forward or backward extrusion
method, 324
semifinished products, 22
shape change, permanent type, 53
shaping methods, 1
shear
band formation in plain strain compression, 42
cracking, 136
cross in cylinder compression, 136
flow stress, 71, 143
fracture in sheet-metal forming, 441
shear (cont.)
layer of moderate shear, 42
localization, 138
strain in wiredrawing, 426
zone in Al-extrusion, 183, 191
shearing, 10, 30
part of extrusion process, 348
as technological test, 257
FEM model of process, 257
to make workpiece, 7
shear stress
at an interface, as process parameter, 14
definition of, 53
maximum value of, 56
positive or negative stress, 55
sheet material, 442
sheet metal forming, 9, 18, 27–29
shiny surface appearance in thin-film lubrication, 146
shut lap, 280
Siebel’s drawing force equation, 403
simulation, 224
simulative tests in sheet-metal forming, 438
slab, 22
slab method, 205
applied in cylinder compression, 209–212
applied in extrusion, 338
applied in plane strain compression, 205
applied in rolling, 373
die pressure in cylinder compression, 212
die pressure in plane strain compression, 208
the force balance, 207
force in cylinder compression, 212
force in plane strain compression, 208
general assumptions, 206
slab rolling, 376
description normal pass, 383
sliding
contact zone at rear end of billet, 351
against die, plane strain compression, 161
friction, 145
slip
in rolling, 367
of wire against capstan, 399
slip line field method, 204
slow flowing zone in extrusion, 329
slug in backward cup extrusion, 285
soft annealed condition, formability of material
in, 131
soft annealing, 27
in wiredrawing production, 397
of workpiece in backward cup extrusion, 285
softening, strain-induced, 136
solid formulation, 222
spinning, 29
tooling in, 29
split billet technique, 182
split die principle, to measure friction, 400
springback
because of elasticity, 440
compensation by coning of bend, 450
compensation by overbending, 449
compensation by stretch bending, 450
compensation methods, 449
phenomenon of, 447
prediction in FEA, 227
ratio, definition of, 448
ratio, experimental data for metals, 448
reduced by stretch forming, 29, 440
why difficult to predict, 449
stable drawing as requirement, 399
stagnant zone in
cylinder compression, 109
plain strain compression, 41, 45
in wiredrawing, 425
static remeshing, 223
stationary processes, 84
steel
C-Mn-steels, 2
of high strength, 7
sticking, 143
between billet and container, 351
friction, 145
stock material in wiredrawing, 397
straight line particle movement in wiredrawing, 429
strain
additive nature of true strain, 59
conditions in rolling, 369
definition of, 58
deviatoric, 66
effective value of, 67
engineering shear strain, 61
finding direction of principal strain, 62
hydrostatic, 66
increment, 58
logarithmic, 58
maximum shear strain, 62
mean strain, 66
natural, 58
nominal, 58
normal strain definition, 61
plane strain state, 60
principal value of, 62
as process parameter, 14
shear strain definition, 61
transformation from true to nominal value, 59
true strain, 58
tru strain in the neck, 105
volume strain, 63
strain and strain rate from velocity field, 88
strain hardening, 116
as parameter influencing necking, 131
exponent, 118
Index

strain-induced softening, 136
strain rate
conditions in rolling, 370
constant value in plain strain compression, 36
definition, 67
effective value in frictionless compression, 107
effective value of, 67
as process parameter, 14
as tensor, 67
sensitivity, 118
from velocity field, 86
strength coefficient, 118
stress
bi-axial, 56
components, 55
definition of, 53
deviator, 65
effective value of, 67
finding principal stress, 56
general state of, 55
homogeneous, 54
hydrostatic, 65
mean (normal) stress, 65
nominal, 54
plane, 56
positive or negative stress, 55
states in technological tests, 111
tensor, 55
transformation, 54
transformation by Mohr’s circle, 56
true, 54
stress, strain, strain rate, compared by effective value, 67
stretch forming, 28
strip
drawing, 149
material, 442
rolling, 376
rolling as cold working process, 388
subsurface
lamination, 321
layer of billet, flow of, 328
subsurface sliding, 143
surface appearance, speckled, 149
surface expansion
in backward cup extrusion, 297–299
in closed-die forging, 316
surface layer of billet, 24
surface quality
in extrusion, 322
friction influence, 139
importance of, 13
surface ring pattern
in backward cup extrusion, 299
in plain strain compression, 36
technique, 199–201
surface
appearance, boundary film lubrication, 148
contamination of, 144
created in metal forming, 13
finish, 13
quality, 13
skin of billet, outflow of in extrusion, 329–331
Swift’s equation, 119
T4-condition, formability of material, 131
taper, used in extrusion, 332
technological tests, 92
description of test methods, 93
mechanics of tests, 92
in sheet-metal forming, 437
temperature
conditions in extrusion, 175
determined indirectly by microstructure, 176
generation in metal forming, 160
at hot spot inside extrusion die, 173
in the die bearing in extrusion, 172
measurement, 164–167
as process parameter, 14
sensitivity, 118
at surface of Al-profile, 176
tensile cracking, FEA study of tensile test, 134
tensile strength, 103
tensile stress cracking, 134
FEA of for compression test, 136
tensile stress zone
in normal wiredrawing, 427
on outside of bend, 439
behind roll gap in normal slab rolling, 387
in strip rolling, 392
tensile testing
to find flow curve, 94
mechanics of test method, 101
as technological test, 93, 94
tensor
to describe strains, 62
notation, 55
theoretical methods in metal forming, 204
thermal
effects, 159–164
gradients in forging dies, 167
response of thermocouple, 165
thermal conditions in
Al-extrusion, 171–176
light slab rolling pass, 380
normal slab rolling pass, 387
nonstationary forging, 167–169
stationary processes, 169–175
wire drawing, 170–171
thermally coupled FEM models, 226
thermocouple, 159, 165
with short thermal response time, 165
thermomechanical treatment, 7
thick-film lubrication, 146
thin film lubrication, 148
thinning
in sheet metal forming, 28
3D-DEFORM®, 224
of wire behind drawing die, 417, 418
torsion testing
deformation without shape change, 96
to determine flow stress and ductility, 96
as technological test, 93, 96
transformation of microstructure in steel, 118
transient, thermal, 164
Tresca friction model, 140
description of, 142–144
mathematical expression, 143
Tresca yield criterion, 71
trimming
of flash, 4, 21
by shearing, 30
true strain from tensile test, 102
true stress
best stress definition, 54
from tensile test, 101
tube drawing, 396
using floating plug, 396
using internal mandrel, 396
tube extrusion, 25
turns of wire over capstan, 399
2D-DEFORM®, 223
types of metal flow in Al extrusion, 190
uniform
def ormation in tensile test, 102
energy method, 204
unlubricated extrusion, 321
upper bound method, 213
in cylinder compression, 216
friction sliding energy, 214
homogeneous deformation energy, 214
inhomogeneous deformation power, 214
power consumed in velocity discontinuity, 215
power consumption, 213, 342
in wiredrawing, 406
upsetting
optimization of process, 331
of the extrusion billet, 323
validation of
forging load in closed die forging, 309
friction in plain strain compression, 39
metal flow in plain strain compression, 39
velocity
in backward cup extrusion, 292
components, 86
conditions in wiredrawing, 399
discontinuities in wiredrawing, 407
discontinuity in extrusion, 341
discontinuity lines, 214
field, 84
field in normal wiredrawing, 428
requirement to velocity field, 87
velocity
of material particle through roll gap, 365
visualization in FEA, 225
Voce’s equations, 119
volume constancy, 63
von Mises yield criterion, 71
Wanheim and Bay’s friction model, 140
warm forming, temperature range of, 118
weak
layers (z-direction lamination), 8
planes, 8
wear of dies, 13
influence of friction, 139
web of extrusion die, 333
welding chamber in extrusion, 333
weld joint of thermocouple, 165
wire breaks, 26, 397
avoiding breaks in drawing, 399, 404
wiredrawing, 26–27, 395
as calibration process, 27
capstan used in, 26
as cold-forming process, 397
as continuous process, 26
converging die channel, 26
experiments of Wistreich, 414
force, 404
force from Siebel’s equation, 410
as industrial process, 397, 399
machines, 397
parameters in industrial process, 414
spooling of the wire, 27
tension on the wire, 410
Wistreich’s experiments, drawing parameters
used, 414
workability, 127, 269
of Al-alloys in extrusion, 335
judged from tensile test, 94
working
of metal, 19
of microstructure, 7
working conditions, unfavorable in rolling, 383
workpiece, 1
final stage, 13
initial stage, 12
<table>
<thead>
<tr>
<th>Index Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>wrinkling, 19</td>
<td>yield criterion, 70</td>
</tr>
<tr>
<td>in deep-drawing, 444</td>
<td>graphical representation of, 71</td>
</tr>
<tr>
<td>in sheet-metal forming, 441</td>
<td>shear stress criterion, 71</td>
</tr>
<tr>
<td>wrought products, 13</td>
<td>Tresca or von Mises, 71</td>
</tr>
<tr>
<td>WUMSI simulator, working principle, 98</td>
<td>yield stress, 103</td>
</tr>
<tr>
<td>X-ray inspection, 130</td>
<td>Zener-Hollomon constitutive equation, 122</td>
</tr>
</tbody>
</table>