CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>xv</td>
<td>Preface</td>
</tr>
<tr>
<td>xx</td>
<td>List of notation</td>
</tr>
<tr>
<td>xxi</td>
<td>BRML Toolbox</td>
</tr>
<tr>
<td>3</td>
<td>Inference in probabilistic models</td>
</tr>
<tr>
<td>3.1</td>
<td>Probabilistic reasoning</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Interpreting conditional probability</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Probability tables</td>
</tr>
<tr>
<td>3.2</td>
<td>Probabilistic reasoning</td>
</tr>
<tr>
<td>3.3</td>
<td>Prior, likelihood and posterior</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Two dice: what were the individual scores?</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary</td>
</tr>
<tr>
<td>3.5</td>
<td>Code</td>
</tr>
<tr>
<td>3.6</td>
<td>Exercises</td>
</tr>
<tr>
<td>22</td>
<td>Basic graph concepts</td>
</tr>
<tr>
<td>4.1</td>
<td>Graphical models</td>
</tr>
<tr>
<td>4.2</td>
<td>Markov networks</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Markov properties</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Markov random fields</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Hammersley–Clifford theorem</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Conditional independence using Markov networks</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Lattice models</td>
</tr>
<tr>
<td>4.3</td>
<td>Chain graphical models</td>
</tr>
<tr>
<td>4.4</td>
<td>Factor graphs</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Conditional independence in factor graphs</td>
</tr>
<tr>
<td>4.5</td>
<td>Expressiveness of graphical models</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary</td>
</tr>
<tr>
<td>4.7</td>
<td>Code</td>
</tr>
<tr>
<td>4.8</td>
<td>Exercises</td>
</tr>
</tbody>
</table>
5 Efficient inference in trees 77
 5.1 Marginal inference
 5.1.1 Variable elimination in a Markov chain and message passing
 5.1.2 The sum-product algorithm on factor graphs
 5.1.3 Dealing with evidence
 5.1.4 Computing the marginal likelihood
 5.1.5 The problem with loops
 5.2 Other forms of inference
 5.2.1 Max-product
 5.2.2 Finding the N most probable states
 5.2.3 Most probable path and shortest path
 5.2.4 Mixed inference
 5.3 Inference in multiply connected graphs
 5.3.1 Bucket elimination
 5.3.2 Loop-cut conditioning
 5.4 Message passing for continuous distributions
 5.5 Summary
 5.6 Code
 5.7 Exercises

6 The junction tree algorithm 102
 6.1 Clustering variables
 6.1.1 Reparameterisation
 6.2 Clique graphs
 6.2.1 Absorption
 6.2.2 Absorption schedule on cliques
 6.3 Junction trees
 6.3.1 The running intersection property
 6.4 Constructing a junction tree for singly connected distributions
 6.4.1 Moralisation
 6.4.2 Forming the clique graph
 6.4.3 Forming a junction tree from a clique graph
 6.4.4 Assigning potentials to cliques
 6.5 Junction trees for multiply connected distributions
 6.5.1 Triangulation algorithms
 6.6 The junction tree algorithm
 6.6.1 Remarks on the JTA
 6.6.2 Computing the normalisation constant of a distribution
 6.6.3 The marginal likelihood
 6.6.4 Some small JTA examples
 6.6.5 Shafer–Shenoy propagation
 6.7 Finding the most likely state
 6.8 Reabsorption: converting a junction tree to a directed network
 6.9 The need for approximations
 6.9.1 Bounded width junction trees
 6.10 Summary
 6.11 Code
 6.12 Exercises

7 Making decisions 127
 7.1 Expected utility
 7.1.1 Utility of money
 7.2 Decision trees
 7.3 Extending Bayesian networks for decisions
 7.3.1 Syntax of influence diagrams
 7.4 Solving influence diagrams
 7.4.1 Messages on an ID
 7.4.2 Using a junction tree
 7.5 Markov decision processes
 7.5.1 Maximising expected utility by message passing
 7.5.2 Bellman’s equation
 7.6 Temporally unbounded MDPs
 7.6.1 Value iteration
 7.6.2 Policy iteration
 7.6.3 A curse of dimensionality
 7.7 Variational inference and planning
 7.8 Financial matters
 7.8.1 Options pricing and expected utility
 7.8.2 Binomial options pricing model
 7.8.3 Optimal investment
 7.9 Further topics
 7.9.1 Partially observable MDPs
 7.9.2 Reinforcement learning
 7.10 Summary
 7.11 Code
 7.12 Exercises
Contents

II Learning in probabilistic models

8 Statistics for machine learning 165

- 8.1 Representing data
 - 8.1.1 Categorical
 - 8.1.2 Ordinal
 - 8.1.3 Numerical
- 8.2 Distributions
 - 8.2.1 The Kullback–Leibler divergence $KL(q||p)$
 - 8.2.2 Entropy and information
- 8.3 Classical distributions
- 8.4 Multivariate Gaussian
 - 8.4.1 Completing the square
 - 8.4.2 Conditioning as system reversal
 - 8.4.3 Whitening and centring
- 8.5 Exponential family
 - 8.5.1 Conjugate priors
- 8.6 Learning distributions
- 8.7 Properties of maximum likelihood
 - 8.7.1 Training assuming the correct model class
 - 8.7.2 Training when the assumed model is incorrect
 - 8.7.3 Maximum likelihood and the empirical distribution
- 8.8 Learning a Gaussian
 - 8.8.1 Maximum likelihood training
 - 8.8.2 Bayesian inference of the mean and variance
 - 8.8.3 Gauss-gamma distribution
- 8.9 Summary
- 8.10 Code
- 8.11 Exercises

9 Learning as inference 199

- 9.1 Learning as inference
 - 9.1.1 Learning the bias of a coin
 - 9.1.2 Making decisions
 - 9.1.3 A continuum of parameters
 - 9.1.4 Decisions based on continuous intervals
- 9.2 Bayesian methods and ML-II
- 9.3 Maximum likelihood training of belief networks
- 9.4 Bayesian belief network training
 - 9.4.1 Global and local parameter independence
- 9.5 Structure learning
 - 9.5.1 PC algorithm
 - 9.5.2 Empirical independence
 - 9.5.3 Network scoring
 - 9.5.4 Chow–Liu trees
- 9.6 Maximum likelihood for undirected models
 - 9.6.1 The likelihood gradient
 - 9.6.2 General tabular clique potentials
 - 9.6.3 Decomposable Markov networks
 - 9.6.4 Exponential form potentials
 - 9.6.5 Conditional random fields
 - 9.6.6 Pseudo likelihood
 - 9.6.7 Learning the structure
- 9.7 Summary
- 9.8 Code
- 9.9 Exercises

10 Naive Bayes 243

- 10.1 Naive Bayes and conditional independence
- 10.2 Estimation using maximum likelihood
 - 10.2.1 Binary attributes
 - 10.2.2 Multi-state variables
 - 10.2.3 Text classification
- 10.3 Bayesian naive Bayes
- 10.4 Tree augmented naive Bayes
 - 10.4.1 Learning tree augmented naive Bayes networks
- 10.5 Summary
- 10.6 Code
- 10.7 Exercises

11 Learning with hidden variables 256

- 11.1 Hidden variables and missing data
 - 11.1.1 Why hidden/missing variables can complicate proceedings
 - 11.1.2 The missing at random assumption
- 11.2 Bayesian methods
- 11.3 Maximum likelihood training of belief networks
- 11.4 Bayesian belief network training
 - 11.4.1 Global and local parameter independence
Table of Contents

11.1.3 Maximum likelihood
11.1.4 Identifiability issues

11.2 Expectation maximisation
 11.2.1 Variational EM
 11.2.2 Classical EM
 11.2.3 Application to belief networks
 11.2.4 General case
 11.2.5 Convergence
 11.2.6 Application to Markov networks

11.3 Extensions of EM
 11.3.1 Partial M-step
 11.3.2 Partial E-step

11.4 A failure case for EM

11.5 Variational Bayes
 11.5.1 EM is a special case of variational Bayes
 11.5.2 An example: VB for the Asbestos-Smoking-Cancer network

11.6 Optimising the likelihood by gradient methods
 11.6.1 Undirected models

11.7 Summary
11.8 Code
11.9 Exercises

12 Bayesian model selection
 12.1 Comparing models the Bayesian way
 12.2 Illustrations: coin tossing
 12.2.1 A discrete parameter space
 12.2.2 A continuous parameter space
 12.3 Occam’s razor and Bayesian complexity penalisation
 12.4 A continuous example: curve fitting
 12.5 Approximating the model likelihood
 12.5.1 Laplace’s method
 12.5.2 Bayes information criterion
 12.6 Bayesian hypothesis testing for outcome analysis
 12.6.1 Outcome analysis
 12.6.2 H_{ind}: model likelihood
 12.6.3 H_{para}: model likelihood
 12.6.4 Dependent outcome analysis
 12.6.5 Is classifier A better than B?

12.7 Summary
12.8 Code
12.9 Exercises

III Machine learning

13 Machine learning concepts
 13.1 Styles of learning
 13.1.1 Supervised learning
 13.1.2 Unsupervised learning
 13.1.3 Anomaly detection
 13.1.4 Online (sequential) learning
 13.1.5 Interacting with the environment
 13.2 Supervised learning
 13.2.1 Utility and loss
 13.2.2 Using the empirical distribution
 13.3 Bayes versus empirical decisions
 13.4 Summary
 13.5 Exercises

14 Nearest neighbour classification
 14.1 Do as your neighbour does
 14.2 K-nearest neighbours
 14.3 A probabilistic interpretation of nearest neighbours
 14.3.1 When your nearest neighbour is far away
 14.4 Summary
 14.5 Code
 14.6 Exercises

15 Unsupervised linear dimension reduction
 15.1 High-dimensional spaces – low-dimensional manifolds
 15.2 Principal components analysis
 15.2.1 Deriving the optimal linear reconstruction
 15.2.2 Maximum variance criterion
 15.3 PCA algorithm
 15.4 PCA and nearest neighbours classification
 15.5 Comments on PCA
Contents

15.3 High-dimensional data
15.3.1 Eigen-decomposition for $N < D$
15.3.2 PCA via singular value decomposition
15.4 Latent semantic analysis
15.4.1 Information retrieval
15.5 PCA with missing data
15.5.1 Finding the principal directions
15.5.2 Collaborative filtering using PCA with missing data
15.6 Matrix decomposition methods
15.6.1 Probabilistic latent semantic analysis
15.6.2 Extensions and variations
15.6.3 Applications of PLSA/NMF
15.7 Kernel PCA
15.8 Canonical correlation analysis
15.8.1 SVD formulation
15.9 Summary
15.10 Code
15.11 Exercises

16 Supervised linear dimension reduction
16.1 Supervised linear projections
16.2 Fisher’s linear discriminant
16.3 Canonical variates
16.3.1 Dealing with the nullspace
16.4 Summary
16.5 Code
16.6 Exercises

17 Linear models
17.1 Introduction: fitting a straight line
17.2 Linear parameter models for regression
17.2.1 Vector outputs
17.2.2 Regularisation
17.2.3 Radial basis functions
17.3 The dual representation and kernels
17.3.1 Regression in the dual space
17.4 Linear parameter models for classification
17.4.1 Logistic regression
17.4.2 Beyond first-order gradient ascent
17.4.3 Avoiding overconfident classification
17.4.4 Multiple classes
17.4.5 The kernel trick for classification
17.5 Support vector machines
17.5.1 Maximum margin linear classifier
17.5.2 Using kernels
17.5.3 Performing the optimisation
17.5.4 Probabilistic interpretation
17.6 Soft zero-one loss for outlier robustness
17.7 Summary
17.8 Code
17.9 Exercises

18 Bayesian linear models
18.1 Regression with additive Gaussian noise
18.1.1 Bayesian linear parameter models
18.1.2 Determining hyperparameters: ML-II
18.1.3 Learning the hyperparameters using EM
18.1.4 Hyperparameter optimisation: using the gradient
18.1.5 Validation likelihood
18.1.6 Prediction and model averaging
18.1.7 Sparse linear models
18.2 Classification
18.2.1 Hyperparameter optimisation
18.2.2 Laplace approximation
18.2.3 Variational Gaussian approximation
18.2.4 Local variational approximation
18.2.5 Relevance vector machine for classification
18.2.6 Multi-class case
18.3 Summary
18.4 Code
18.5 Exercises

© in this web service Cambridge University Press
www.cambridge.org
19 Gaussian processes

19.1 Non-parametric prediction
19.1.1 From parametric to non-parametric
19.1.2 From Bayesian linear models to Gaussian processes
19.1.3 A prior on functions

19.2 Gaussian process prediction
19.2.1 Regression with noisy training outputs

19.3 Covariance functions
19.3.1 Making new covariance functions from old
19.3.2 Stationary covariance functions
19.3.3 Non-stationary covariance functions

19.4 Analysis of covariance functions
19.4.1 Smoothness of the functions
19.4.2 Mercer kernels
19.4.3 Fourier analysis for stationary kernels

19.5 Gaussian processes for classification
19.5.1 Binary classification
19.5.2 Laplace’s approximation
19.5.3 Hyperparameter optimisation
19.5.4 Multiple classes

19.6 Summary
19.7 Code
19.8 Exercises

20 Mixture models

20.1 Density estimation using mixtures
20.2 Expectation maximisation for mixture models
20.2.1 Unconstrained discrete tables
20.2.2 Mixture of product of Bernoulli distributions

20.3 The Gaussian mixture model
20.3.1 EM algorithm
20.3.2 Practical issues
20.3.3 Classification using Gaussian mixture models
20.3.4 The Parzen estimator
20.3.5 K-means

20.5.1 Joint indicator approach: factorised prior
20.5.2 Polya prior
20.6 Mixed membership models
20.6.1 Latent Dirichlet allocation
20.6.2 Graph-based representations of data
20.6.3 Dyadic data
20.6.4 Monadic data
20.6.5 Cliques and adjacency matrices for monadic binary data

20.7 Summary
20.8 Code
20.9 Exercises

21 Latent linear models

21.1 Factor analysis
21.1.1 Finding the optimal bias
21.2 Factor analysis: maximum likelihood
21.2.1 Eigen-approach likelihood optimisation
21.2.2 Expectation maximisation

21.3 Interlude: modelling faces
21.4 Probabilistic principal components analysis

21.5 Canonical correlation analysis and factor analysis
21.6 Independent components analysis

21.7 Summary
21.8 Code
21.9 Exercises

22 Latent ability models

22.1 The Rasch model
22.1.1 Maximum likelihood training
22.1.2 Bayesian Rasch models

22.2 Competition models
22.2.1 Bradley–Terry–Luce model
22.2.2 Elo ranking model
22.2.3 Glicko and TrueSkill
IV Dynamical models

23 Discrete-state Markov models 489
23.1 Markov models
 23.1.1 Equilibrium and stationary distribution of a Markov chain
 23.1.2 Fitting Markov models
 23.1.3 Mixture of Markov models
23.2 Hidden Markov models
 23.2.1 The classical inference problems
 23.2.2 Filtering $p(h_t|v_{1:t})$
 23.2.3 Parallel smoothing $p(h_t|v_{1:T})$
 23.2.4 Correction smoothing
 23.2.5 Sampling from $p(h_{1:T}|v_{1:T})$
 23.2.6 Most likely joint state
 23.2.7 Prediction
 23.2.8 Self-localisation and kidnapped robots
 23.2.9 Natural language models
23.3 Learning HMMs
 23.3.1 EM algorithm
 23.3.2 Mixture emission
 23.3.3 The HMM-GMM
 23.3.4 Discriminative training
23.4 Related models
 23.4.1 Explicit duration model
 23.4.2 Input–output HMM
 23.4.3 Linear chain CRFs
 23.4.4 Dynamic Bayesian networks
23.5 Applications
 23.5.1 Object tracking
 23.5.2 Automatic speech recognition
 23.5.3 Bioinformatics
 23.5.4 Part-of-speech tagging
23.6 Summary
23.7 Code
23.8 Exercises

24 Continuous-state Markov models 520
24.1 Observed linear dynamical systems
 24.1.1 Stationary distribution with noise
24.2 Auto-regressive models
 24.2.1 Training an AR model
 24.2.2 AR model as an OLDS
 24.2.3 Time-varying AR model
 24.2.4 Time-varying variance AR models
24.3 Latent linear dynamical systems
24.4 Inference
 24.4.1 Filtering
 24.4.2 Smoothing: Rauch–Tung–Striebel correction method
 24.4.3 The likelihood
 24.4.4 Most likely state
 24.4.5 Time independence and Riccati equations
24.5 Learning linear dynamical systems
 24.5.1 Identifiability issues
 24.5.2 EM algorithm
 24.5.3 Subspace methods
 24.5.4 Structured LDSs
 24.5.5 Bayesian LDSs
24.6 Switching auto-regressive models
 24.6.1 Inference
 24.6.2 Maximum likelihood learning using EM
24.7 Summary
24.8 Code
24.9 Exercises

25 Switching linear dynamical systems 547
25.1 Introduction
25.2 The switching LDS
 25.2.1 Exact inference is computationally intractable
25.3 Gaussian sum filtering
 25.3.1 Continuous filtering
 25.3.2 Discrete filtering
 25.3.3 The likelihood $p(v_{1:T})$
 25.3.4 Collapsing Gaussians
 25.3.5 Relation to other methods
25.4 Gaussian sum smoothing
 25.4.1 Continuous smoothing
 25.4.2 Discrete smoothing
 25.4.3 Collapsing the mixture
 25.4.4 Using mixtures in smoothing
 25.4.5 Relation to other methods
25.5 Reset models
- 25.5.1 A Poisson reset model
- 25.5.2 Reset-HMM-LDS

25.6 Summary

25.7 Code

25.8 Exercises

26 Distributed computation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>26.2</td>
<td>Stochastic Hopfield networks</td>
</tr>
<tr>
<td>26.3</td>
<td>Learning sequences</td>
</tr>
<tr>
<td>26.3.1</td>
<td>A single sequence</td>
</tr>
<tr>
<td>26.3.2</td>
<td>Multiple sequences</td>
</tr>
<tr>
<td>26.3.3</td>
<td>Boolean networks</td>
</tr>
<tr>
<td>26.3.4</td>
<td>Sequence disambiguation</td>
</tr>
<tr>
<td>26.4</td>
<td>Tractable continuous latent variable models</td>
</tr>
<tr>
<td>26.4.1</td>
<td>Deterministic latent variables</td>
</tr>
<tr>
<td>26.4.2</td>
<td>An augmented Hopfield network</td>
</tr>
<tr>
<td>26.5</td>
<td>Neural models</td>
</tr>
<tr>
<td>26.5.1</td>
<td>Stochastically spiking neurons</td>
</tr>
<tr>
<td>26.5.2</td>
<td>Hopfield membrane potential</td>
</tr>
<tr>
<td>26.5.3</td>
<td>Dynamic synapses</td>
</tr>
<tr>
<td>26.5.4</td>
<td>Leaky integrate and fire models</td>
</tr>
<tr>
<td>26.6</td>
<td>Summary</td>
</tr>
<tr>
<td>26.7</td>
<td>Code</td>
</tr>
<tr>
<td>26.8</td>
<td>Exercises</td>
</tr>
</tbody>
</table>

27 Sampling

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>27.1.1</td>
<td>Univariate sampling</td>
</tr>
<tr>
<td>27.1.2</td>
<td>Rejection sampling</td>
</tr>
<tr>
<td>27.1.3</td>
<td>Multivariate sampling</td>
</tr>
<tr>
<td>27.2</td>
<td>Ancestral sampling</td>
</tr>
<tr>
<td>27.2.1</td>
<td>Dealing with evidence</td>
</tr>
<tr>
<td>27.2.2</td>
<td>Perfect sampling for a Markov network</td>
</tr>
<tr>
<td>27.3</td>
<td>Gibbs sampling</td>
</tr>
<tr>
<td>27.3.1</td>
<td>Gibbs sampling as a Markov chain</td>
</tr>
<tr>
<td>27.3.2</td>
<td>Structured Gibbs sampling</td>
</tr>
<tr>
<td>27.3.3</td>
<td>Remarks</td>
</tr>
<tr>
<td>27.4</td>
<td>Markov chain Monte Carlo (MCMC)</td>
</tr>
</tbody>
</table>

28 Deterministic approximate inference

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>28.2</td>
<td>The Laplace approximation</td>
</tr>
<tr>
<td>28.3</td>
<td>Properties of Kullback–Leibler variational inference</td>
</tr>
<tr>
<td>28.3.1</td>
<td>Bounding the normalisation constant</td>
</tr>
<tr>
<td>28.3.2</td>
<td>Bounding the marginal likelihood</td>
</tr>
<tr>
<td>28.3.3</td>
<td>Bounding marginal quantities</td>
</tr>
<tr>
<td>28.3.4</td>
<td>Gaussian approximations using KL divergence</td>
</tr>
<tr>
<td>28.3.5</td>
<td>Marginal and moment matching properties of minimising KL(q)p</td>
</tr>
<tr>
<td>28.4</td>
<td>Variational bounding using KL(q)p</td>
</tr>
<tr>
<td>28.4.1</td>
<td>Pairwise Markov random field</td>
</tr>
<tr>
<td>28.4.2</td>
<td>General mean-field equations</td>
</tr>
<tr>
<td>28.4.3</td>
<td>Asynchronous updating guarantees approximation improvement</td>
</tr>
<tr>
<td>28.4.4</td>
<td>Structured variational approximation</td>
</tr>
<tr>
<td>28.5</td>
<td>Local and KL variational approximations</td>
</tr>
<tr>
<td>28.5.1</td>
<td>Local approximation</td>
</tr>
<tr>
<td>28.5.2</td>
<td>KL variational approximation</td>
</tr>
<tr>
<td>28.6</td>
<td>Mutual information maximisation: a KL variational approach</td>
</tr>
</tbody>
</table>