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Introduction

A recurrent theme in this book is the concept of a game. There are essentially
three kinds of games in logic. One is the Semantic Game, also called the Eval-
uation Game, where the truth of a given sentence in a given model is at issue.
Another is the Model Existence Game, where the consistency in the sense of
having a model, or equivalently in the sense of impossibility to derive a con-
tradiction, is at issue. Finally there is the Ehrenfeucht–Fraı̈ssé Game, where
separation of a model from another by finding a property that is true in one
given model but false in another is the goal. The three games are closely linked
to each other and one can even say they are essentially variants of just one basic
game. This basic game arises from our understanding of the quantifiers. The
purpose of this book is to make this strategic aspect of logic perfectly transpar-
ent and to show that it underlies not only first-order logic but infinitary logic
and logic with generalized quantifiers alike.

We call the close link between the three games the Strategic Balance of
Logic (Figure 1.1). This balance is perfectly commutative, in the sense that
winning strategies can be transferred from one game to another. This mere
fact is testimony to the close connection between logic and games, or, thinking
semantically, between games and models. This connection arises from the na-
ture of quantifiers. Introducing infinite disjunctions and conjunctions does not
upset the balance, barring some set-theoretic issues that may surface. In the
last chapter of this book we consider generalized quantifiers and show that the
Strategic Balance of Logic persists even in the presence of generalized quanti-
fiers.

The purpose of this book is to present the Strategic Balance of Logic in all
its glory.
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2 Introduction

Figure 1.1 The Strategic Balance of Logic.
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2

Preliminaries and Notation

We use some elementary set theory in this book, mainly basic properties of
countable and uncountable sets. We will occasionally use the concept of count-
able ordinal when we index some uncountable sets. There are many excellent
books on elementary set theory. (See Section 2.7.) We give below a simplified
account of some basic concepts, the barest outline necessary for this book.

We denote the set {0, 1, 2, . . .} of all natural numbers by N, the set of ra-
tional numbers by Q, and the set of all real numbers by R. The power-set
operation is written

P(A) = {B : B ⊆ A}.
We use A \ B to denote the set-theoretical difference of the sets A and B.
If f is a function, f ′′X is the set {f(x) : x ∈ X} and f−1(X) is the set
{x ∈ dom(f) : f(x) ∈ X}. Composition of two functions f and g is denoted
g ◦ f and defined by (g ◦ f)(x) = g(f(x)). We often write fa for f(a).
The notation idA is used for the identity function A → A which maps every
element of A to itself, i.e. idA(a) = a for a ∈ A.

2.1 Finite Sequences

The concept of a finite (ordered) sequence

s = (a0, . . . , an−1)

of elements of a given set A plays an important role in this book. Examples of
finite sequences of elements of N are

(8, 3, 9, 67, 200, 0)

(8, 8, 8)
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4 Preliminaries and Notation

(24).

We can identify the sequence s = (a0, . . . , an−1) with the function

s′ : {0, . . . , n− 1} → A,

where

s′(i) = ai.

The main property of finite sequences is: (a0, . . . , an−1) = (b0, . . . , bm−1) if
and only if n = m and ai = bi for all i < n. The number n is called the length
of the sequence s = (a0, . . . , an−1) and is denoted len(s). A special case is
the case len(s) = 0. Then s is called the empty sequence. There is exactly one
empty sequence and it is denoted by ∅.

The Cartesian product of two sets A and B is written

A×B = {(a, b) : a ∈ A, b ∈ B}.
More generally

A0 × . . .×An−1 = {(a0, . . . , an−1) : ai ∈ Ai for all i < n}.

An = A× . . .×A (n times).

According to this definition, A1 �= A. The former consists of sequences of
length 1 of elements of A. Note that A0 = {∅}.

Finite Sets

A set A is finite if it is of the form {a0, . . . , an−1} for some natural number n.
This means that the set A has at most n elements. If A has exactly n elements
we write |A| = n and call |A| the cardinality of A. A set which is not finite is
infinite. Finite sets form a so-called ideal, which means that:

1. ∅ is finite.
2. If A and B are finite, then so is A ∪B.
3. If A is finite and B ⊆ A, then also B is finite.

Further useful properties of finite sets are:

1. If A and B are finite, then so is A×B.
2. If A is finite, then so is P(A).
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2.2 Equipollence 5

The Axiom of Choice says that for every set A of non-empty sets there is a
function f such that f(a) ∈ a for all a ∈ A. We shall use the Axiom of Choice
freely without specifically mentioning it. It needs some practice in set theory
to see how the axiom is used. Often an intuitively appealing argument involves
a hidden use of it.

Lemma 2.1 A set A is finite if and only if every injective f : A → A is a
bijection.

Proof Suppose A is finite and f : A → B is an injection with B ⊂ A and
a ∈ A \ B. Let a0 = a and an+1 = f(an). It is easy to see that an �= am
whenever n < m, so we contradict the finiteness of A. On the other hand, if A
is infinite, we can (by using the Axiom of Choice) pick a sequence bn, n ∈ N,
of distinct elements from A. Then the function g which maps each bn to bn+1

and is the identity elsewhere is an injective mapping from A into A but not a
bijection.

The set of all n-element subsets {a0, . . . , an−1} of A is denoted by [A]n.

2.2 Equipollence

Sets A and B are equipollent

A ∼ B

if there is a bijection f : A → B. Then f−1 : B → A is a bijection and

B ∼ A

follows. The composition of two bijections is a bijection, whence

A ∼ B ∼ C =⇒ A ∼ C.

Thus ∼ divides sets into equivalence classes. Each equivalence class has a
canonical representative (a cardinal number, see the Subsection “Cardinals”
below) which is called the cardinality of (each of) the sets in the class. The
cardinality of A is denoted by |A| and accordingly A ∼ B is often written

|A| = |B|.
One of the basic properties of equipollence is that if

A ∼ C,B ∼ D and A ∩B = C ∩D = ∅,
then

A ∪B ∼ C ∪D.
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6 Preliminaries and Notation

Indeed, if f : A → C is a bijection and g : B → D is a bijection, then
f ∪ g : A ∪B → C ∪D is a bijection. If the assumption

A ∩B = C ∩D = ∅
is dropped, the conclusion fails, of course, as we can have A ∩ B = ∅ and
C = D. It is also interesting to note that even if A ∩ B = C ∩ D = ∅, the
assumption A∪B ∼ C∪D does not imply B ∼ D even if A ∼ C is assumed:
Let A = N, B = ∅, C = {2n : n ∈ N}, and D = {2n+1 : n ∈ N}. However,
for finite sets this holds: if A ∪B is finite,

A ∪B ∼ C ∪D, A ∼ C, A ∩B = C ∩D = ∅
then

B ∼ D.

We can interpret this as follows: the cancellation law holds for finite numbers
but does not hold for cardinal numbers of infinite sets.

There are many interesting and non-trivial properties of equipollence that
we cannot enter into here. For example the Schröder–Bernstein Theorem: If
A ∼ B and B ⊆ C ⊆ A, then A ∼ C. Here are some interesting consequences
of the Axiom of Choice:

• For all A and B there is C such that A ∼ C ⊆ B or B ∼ C ⊆ A.
• For all infinite A we have A ∼ A×A.

It is proved in set theory by means of the Axiom of Choice that |A| ≤ |B|
holds in the above sense if and only if the cardinality |A| of the set A is at
most the cardinality |B| of the set B. Thus the notation |A| ≤ |B| is very
appropriate.

2.3 Countable sets

A set A which is empty or of the form {a0, a1, . . .}, i.e. {an : n ∈ N}, is called
countable. A set which is not countable is called uncountable. The countable
sets form an ideal just as the finite sets do. We now prove two important results
about countability. Both are due to Georg Cantor:

Theorem 2.2 If A and B are countable, then so is A×B.

Proof If either set is empty, the Cartesian product is empty. So let us assume
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2.4 Ordinals 7

the sets are both non-empty. Suppose A = {a0, a1, . . .} and B = {b0, b1, . . .}.
Let

cn =

{
(ai, bj), if n = 2i3j

(a0, b0), otherwise.

Now A×B = {cn : n ∈ N}, whence A×B is countable.

Theorem 2.3 The union of a countable family of countable sets is countable.

Proof The empty sets do not contribute anything to the union, so let us as-
sume all the sets are non-empty. Suppose An is countable for each n ∈ N,
say, An = {anm : m ∈ N} (we use here the Axiom of Choice to choose an
enumeration for each An). Let B =

⋃
n An. We want to represent B in the

form {bn : n ∈ N}. If n is given, we consider two cases: If n is 2i3j for some
i and j, we let bn = aij . Otherwise we let bn = a00.

Theorem 2.4 The power-set of an infinite set is uncountable.

Proof Suppose A is infinite and P(A) = {bn : n ∈ N}. Since A is infinite,
we can choose distinct elements {an : n ∈ N} from A. (This uses the Axiom of
Choice. For an argument which avoids the Axiom of Choice see Exercise 2.14.)
Let

B = {an : an /∈ bn}.
Since B ⊆ A, there is some n such that B = bn. Is an an element of B

or not? If it is, then an /∈ bn which is a contradiction. So it is not. But then
an ∈ bn = B, again a contradiction.

2.4 Ordinals

The ordinal numbers introduced by Cantor are a marvelous general theory of
measuring the potentially infinite. They are intimately related to inductive def-
initions and occur therefore widely in logic. It is easiest to understand ordinals
in the context of games, although this was not Cantor’s way. Suppose we have
a game with two players I and II. It does not matter what the game is, but it
could be something like chess. If II can force a win in n moves we say that
the game has rank n. Suppose then II cannot force a win in n moves for any
n, but after she has seen the first move of I, she can fix a number n and say
that she can force a win in n moves. This situation is clearly different from
being able to say in advance what n is. So we invent a symbol ω for the rank
of this game. In a clear sense ω is greater than each n but there does not seem
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8 Preliminaries and Notation

to be any possible rank between all the finite numbers n and ω. We can think
of ω as an infinite number. However, there is nothing metaphysical about the
infiniteness of ω. It just has infinitely many predecessors. We can think of ω as
a tree Tω with a root and a separate branch of length n for each n above the
root as in the tree on the left in Figure 2.1.

Figure 2.1 Tω and Tω+1.

Suppose then II is not able to declare after the first move how many moves
she needs to beat II, but she knows how to play her first move in such a way
that after I has played his second move, she can declare that she can win in n

moves. We say that the game has rank ω + 1 and agree that this is greater than
ω but there is no rank between them. We can think of ω + 1 as the tree which
has a root and then above the root the tree Tω , as in the tree on the right in
Figure 2.1. We can go on like this and define the ranks ω + n for all n.

Suppose now the rank of the game is not any of the above ranks ω + n, but
still II can make an interesting declaration: she says that after the first move
of I she can declare a number m so that after m moves she declares another
number n and then in n moves she can force a win. We would say that the rank
of the game is ω+ω. We can continue in this way defining ranks of games that
are always finite but potentially infinite. These ranks are what set theorists call
ordinals.

We do not give an exact definition of the concept of an ordinal, because it
would take us too far afield and there are excellent textbooks on the topic. Let
us just note that the key properties of ordinals and their total order < are:

1. Natural numbers are ordinals.
2. For every ordinal α there is an immediate successor α+ 1.
3. Every non-empty set of ordinals has a smallest element.
4. Every non-empty set of ordinals has a supremum (i.e. a smallest upper

bound).
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2.5 Cardinals 9

The supremum of the set {0, 1, 2, 3, . . .} of ordinals is denoted by ω. An
ordinal is said to be countable if it has only countably many predecessors,
otherwise uncountable. The supremum of all countable ordinals is denoted by
ω1. Here is a picture of the ordinal number “line”:

0 < 1 < 2 < . . . < ω < ω + 1 < . . . < α < α+ 1 < . . . < ω1 < . . .

Ordinals that have a last element, i.e. are of the form α + 1, are called suc-
cessor ordinals; the rest are limit ordinals, like ω and ω + ω.

Ordinals are often used to index elements of uncountable sets. For example,
{aα : α < β} denotes a set whose elements have been indexed by the ordinal
β, called the length of the sequence. The set of all such sequences of length
β of elements of a given set A is denoted by Aβ . The set of all sequences of
length < β of elements of a given set A is denoted by A<β .

2.5 Cardinals

Historically cardinals (or more exactly cardinal numbers) are just representa-
tives of equivalence classes of equipollence. Thus there is a cardinal number
for countable sets, denoted ℵ0, a cardinal number for the set of all reals, de-
noted c, and so on. There is some question as to what exactly are these cardinal
numbers. The Axiom of Choice offers an easy answer, which is the prevailing
one, as it says that every set can be well-ordered. Then we can let the cardi-
nal number of a set be the order-type of the smallest well-order equipollent
with the set. Equivalently, the cardinal number of a set is the smallest ordinal
equipollent with the set. If we leave aside the Axiom of Choice, some sets need
not have have a cardinal number. However, as is customary in current set the-
ory, let us indeed assume the Axiom of Choice. Then every set has a cardinal
number and the cardinal numbers are ordinals, hence well-ordered. The αth in-
finite cardinal number is denoted ℵα. Thus ℵ1 is the next in order of magnitude
from ℵ0. The famous Continuum Hypothesis is the statement that ℵ1 = c.

For every set A there exists (by the Axiom of Choice) an ordinal α such
that the elements of A can be listed as {aβ : β < α}. The smallest such α is
called the cardinal number, or cardinality, of A and denoted by |A|. Thus cer-
tain ordinals are cardinal numbers of sets. Such ordinals are called cardinals.
They are considered as canonical representatives of each equivalence class of
equipollent sets. For example, all finite numbers are cardinals, as are ω and ω1.
The smallest cardinal such that the smaller infinite cardinals can be enumer-
ated in increasing order as κβ , β < α, is denoted ωα, or alternatively ℵα. If
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10 Preliminaries and Notation

κ = ℵα, then ℵα+1 is denoted κ+ and is called a successor cardinal. Cardinals
that are not successor cardinals are called limit cardinals.

Arithmetic operations κ+ λ, κ · λ, κλ for cardinals are defined as follows:

κ+ λ = |κ ∪ λ|, κ · λ = |κ× λ|.
Moreover, exponentiation κλ of cardinal numbers is defined as the cardinality
of the set κλ of sequences of elements of κ of length λ. A certain amount of
knowledge about the arithmetic of cardinal numbers in necessary in this book,
especially in the later chapters, and Chapters 8 and 9 in particular.

The cofinality of an ordinal α is the smallest ordinal β for which there is a
function f : β → α such that (1) ξ < ζ < β implies f(ξ) < f(ζ), and (2) for
all ξ < α there is some ζ < β such that ξ < f(ζ). We use cf(α) to denote the
cofinality of α. A cardinal κ is said to be regular if cf(κ) = κ, and singular
if cf(κ) < κ. Successor cardinals are always regular. The smallest singular
cardinal is ℵω .

The Continuum Hypothesis (CH) is the hypothesis |P(N)| = ℵ1. Neither it
nor its negation can be derived from the usual Zermelo–Fraenkel axioms of set
theory and therefore it (or its negation), like many other similar hypotheses,
has to be explicitly mentioned as an assumption, when it is used.

2.6 Axiom of Choice

We have already mentioned the Axiom of Choice. There are so many equiv-
alent formulations of this axiom that books have been written about it. The
most notable formulation is the Well-Ordering Principle: every set is equipol-
lent with an ordinal. The Axiom of Choice is sometimes debated because it
brings arbitrariness or abstractness into mathematics, often with examples that
can be justifiably called pathological, like the Banach–Tarski Paradox: The
unit sphere in three-dimensional space can be split into five pieces so that if
the pieces are rigidly moved and rotated they form two spheres, each of the
original size. The trick is that the splitting exists only in the abstract world of
mathematics and can never actually materialize in the physical world. Con-
clusion: infinite abstract objects do not obey the rules we are used to among
finite concrete objects. This is like the situation with sub-atomic elementary
particles, where counter-intuitive phenomena, such as entanglement, occur.

Because of the abstractness brought about by the Axiom of Choice it has
received criticism and some authors always mention explicitly if they use it
in their work. The main problem in working without the Axiom of Choice is
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