Contents

Contributors page xi
Preface xvii
Common nomenclature xix

1 Introduction
Norman Epstein and John R. Grace

1.1 The spouted bed 1
1.2 Brief history 3
1.3 Flow regime maps encompassing conventional spouting 5
1.4 Nonaxisymmetric geometries of spouted beds 7
1.5 Spouted beds in the gas–solid contacting spectrum 9
1.6 Layout of chapter topics 12
 References 14

2 Initiation of spouting
Xiaotao Bi

2.1 Introduction 17
2.2 Evolution of internal spout 19
2.3 Peak pressure drop 22
2.4 Onset of external spouting and minimum spouting velocity 23
 Chapter-specific nomenclature 26
 References 27

3 Empirical and analytical hydrodynamics
Norman Epstein

3.1 Constraints on fluid inlet diameter 29
3.2 Minimum spouting velocity 30
3.3 Maximum spoutable bed depth 35
3.4 Annular fluid flow 39
3.5 Pressure drops, profiles, and gradients 47
3.6 Spout diameter 51
3.7 Flow split between spout and annulus 53
 References 54

© in this web service Cambridge University Press www.cambridge.org
4 Computational fluid dynamic modeling of spouted beds 57
Xiaojun Bao, Wei Du, and Jian Xu

4.1 Introduction 57
4.2 Eulerian-Eulerian approach 57
4.3 Eulerian-Lagrangian approach 68
4.4 Concluding remarks 76
 Chapter-specific nomenclature 77
 References 78

5 Conical spouted beds 82
Martin Olazar, Maria J. San José, and Javier Bilbao

5.1 Introduction 82
5.2 Conditions for stable operation and design geometric factors 82
5.3 Hydrodynamics 84
5.4 Gas flow modeling 87
5.5 Particle segregation 90
5.6 Local properties 92
5.7 Numerical simulation 96
5.8 Applications 97
 Chapter-specific nomenclature 100
 References 101

6 Hydrodynamics of spout-fluid beds 105
Wenqi Zhong, Baosheng Jin, Mingyao Zhang, and Rui Xiao

6.1 Hydrodynamic characteristics 105
6.2 Typical applications 119
6.3 Closing remarks 122
 Chapter-specific nomenclature 123
 References 123

7 Spouted and spout-fluid beds with draft tubes 128
Željko B. Grbačić, Howard Littman, Morris H. Morgan III, and John D. Paccione

7.1 Operation of draft tube spout-fluid beds 128
7.2 Novel applications and experimental studies 133
 Chapter-specific nomenclature 138
 References 138

8 Particle mixing and segregation 141
Giorgio Rovero and Norberto Piccinini

8.1 Gross solids mixing behavior 141
8.2 Mixing in a pulsed spouted bed 148
8.3 Origin of segregation studies 149
8.4 Segregation in continuously operated spouted beds 150
8.5 Top surface segregation 153
8.6 Mixing and segregation in conical spouted beds 154
8.7 Mixing and segregation in a multispouting vessel 156
8.8 Mixing and segregation in a modified spouted bed 157
Acknowledgment 157
Chapter-specific nomenclature 158
References 159

9 Heat and mass transfer 161
Andrzej Kmiec and Sebastian Englart
9.1 Introduction 161
9.2 Between fluid and particles 161
9.3 Between wall and bed 166
9.4 Between submerged object and bed 168
9.5 Temperature uniformity 169
Chapter-specific nomenclature 170
References 171

10 Powder–particle spouted beds 175
Toshifumi Ishikura and Hiroshi Nagashima
10.1 Description of powder–particle spouted beds 175
10.2 Fundamentals 177
10.3 Applications 182
Chapter-specific nomenclature 184
References 184

11 Drying of particulate solids 187
Maria Laura Passos, Esly Ferreira da Costa Jr., and Arun Sadashiv Mujumdar
11.1 Various spouted bed dryers for particulate solids 187
11.2 Dryer design models 194
11.3 Drying model formulation 194
11.4 Computational fluid dynamic models 201
Chapter-specific nomenclature 201
References 202

12 Drying of solutions, slurries, and pastes 206
José Teixeira Freire, Maria do Carmo Ferreira, and Fábio Bentes Freire
12.1 Introduction 206
12.2 Drying process 206
Contents

12.3 Influence of paste on the fluid dynamic parameters 211
12.4 Modeling of drying 215
12.5 Final remarks 218
 Chapter-specific nomenclature 219
 References 219

13 Granulation and particle coating 222
Sandra Cristina dos Santos Rocha and Osvaldir Pereira Taranto
13.1 Introduction 222
13.2 Granulating and coating mechanisms 223
13.3 Advances in spouted bed granulation/coating 225
13.4 Surface properties influencing granulation/coating processes 230
13.5 Concluding remarks 233
 Chapter-specific nomenclature 233
 References 234

14 The Wurster coater 238
Sarah Palmer, Andrew Ingram, and Jonathan Seville
14.1 Introduction: particle coating techniques 238
14.2 Features of the Wurster coater 240
14.3 Uniformity and quality of coating 241
14.4 Particle motion studies 243
14.5 Modeling of coating thickness variation 245
14.6 Developments in design 246
 Acknowledgments 246
 Chapter-specific nomenclature 247
 References 248

15 Gasification, pyrolysis, and combustion 250
A. Paul Watkinson and Antonio C. L. Lisboa
15.1 Gasification background 250
15.2 Spouted bed gasification of coal and coke 251
15.3 Spouted bed gasification of biomass and wastes 256
15.4 Throughput and scale of spouted bed gasification 256
15.5 Modeling of spouted bed gasification 257
15.6 Spouted bed pyrolysis of coal, shale, biomass, and solid wastes 258
15.7 Combustion of solid fuels 260
15.8 Spouted bed combustion of coal and other solids 261
15.9 Concluding remarks 264
 References 265
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Spouted bed electrochemical reactors</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>J. W. Evans and Vladimír Jiřičný</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>269</td>
</tr>
<tr>
<td>16.2</td>
<td>Spouted bed electrodes</td>
<td>270</td>
</tr>
<tr>
<td>16.3</td>
<td>Applications of SBEs</td>
<td>275</td>
</tr>
<tr>
<td>16.4</td>
<td>Concluding remarks</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>280</td>
</tr>
<tr>
<td>17</td>
<td>Scaleup, slot-rectangular, and multiple spouting</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>John R. Grace and C. Jim Lim</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>17.2</td>
<td>Maximum size of spouted beds</td>
<td>284</td>
</tr>
<tr>
<td>17.3</td>
<td>Influence of column diameter on hydrodynamics</td>
<td>284</td>
</tr>
<tr>
<td>17.4</td>
<td>Application of dimensional similitude to scaling of spouted beds</td>
<td>285</td>
</tr>
<tr>
<td>17.5</td>
<td>Slot-rectangular spouted beds</td>
<td>289</td>
</tr>
<tr>
<td>17.6</td>
<td>Multiple spout geometries</td>
<td>291</td>
</tr>
<tr>
<td>17.7</td>
<td>Scaleup of spout-fluid beds</td>
<td>293</td>
</tr>
<tr>
<td>17.8</td>
<td>Final comments and recommendations related to scaleup</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>294</td>
</tr>
<tr>
<td>18</td>
<td>Mechanical spouting</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>Tibor Szentmarjay, Elizabeth Pallai, and Judith Tóth</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Principle of mechanical spouting</td>
<td>297</td>
</tr>
<tr>
<td>18.2</td>
<td>Mechanically spouted bed drying</td>
<td>298</td>
</tr>
<tr>
<td>18.3</td>
<td>Dimensions</td>
<td>300</td>
</tr>
<tr>
<td>18.4</td>
<td>Inert particles</td>
<td>300</td>
</tr>
<tr>
<td>18.5</td>
<td>Cycle time distribution</td>
<td>300</td>
</tr>
<tr>
<td>18.6</td>
<td>Pressure drop</td>
<td>302</td>
</tr>
<tr>
<td>18.7</td>
<td>Drying mechanism</td>
<td>303</td>
</tr>
<tr>
<td>18.8</td>
<td>Scaleup</td>
<td>303</td>
</tr>
<tr>
<td>18.9</td>
<td>Developments</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>304</td>
</tr>
<tr>
<td>19</td>
<td>Catalytic reactors and their modeling</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Giorgio Rovero and Norberto Piccinini</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Fundamental modeling</td>
<td>305</td>
</tr>
<tr>
<td>19.2</td>
<td>Applied studies</td>
<td>310</td>
</tr>
<tr>
<td>19.3</td>
<td>Conical spouted bed reactors</td>
<td>313</td>
</tr>
</tbody>
</table>
Contents

19.4 Modified spouted bed reactors .. 317
Acknowledgment ... 318
Chapter-specific nomenclature .. 318
References .. 319

20 Liquid and liquid–gas spouting of solids ... 321
Željko B. Grbavčić, Howard Littman, and Morris H. Morgan III

20.1 Liquid spouting .. 321
20.2 Liquid–gas spouting ... 328
Chapter-specific nomenclature .. 332
References .. 333

Index ... 337