Fertility Cryopreservation
Fertility Cryopreservation

Ri-Cheng Chian
McGill University, Montreal, Canada

Patrick Quinn
Sage IVF, Redmond, OR, USA
Contents

List of Contributors page vii
Preface xi
Acknowledgements xiii

Section 1: Cryobiology

1 Cryobiology: an overview 1
Ri-Cheng Chian

2 Suppression of ice in aqueous solutions and its application to vitrification in assisted reproductive technology 10
Patrick Quinn

3 Movement of water and cryoprotectants in mouse oocytes and embryos at different stages: relevance to cryopreservation 16
Magosaburo Kasai and Keisuke Edashige

4 Cryoprotectants 24
Jason E. Swain and Gary D. Smith

Section 2: Cryopreservation of sperm and testicular tissue

5 Cryopreservation of sperm: an overview 39
Fady Shehata and Ri-Cheng Chian

6 Sperm cryopreservation for a donor program 46
Zheng Li and Peng Xu

7 Cryopreservation of surgically retrieved sperm 51
Peter T. K. Chan

8 Testicular tissue cryopreservation 57
Ariel Revel and Javier Mejia

Section 3: Cryopreservation of embryos

9 Cryopreservation of embryos: an overview 67
David H. Edgar and Debra A. Gook

10 Cryopreservation of pronuclear stage human embryos 76
Barry Behr and Yimin Shu

11 Cryopreservation of day two and day three embryos 89
Yunxia Cao and Zhiguo Zhang

12 Cryopreservation of blastocysts 95
Yoshiharu Morimoto

13 Aseptic vitrification of human blastocysts: protocol development and clinical application 106
Pierre Vanderzwalmen, Luc Grobet, Yannis Prapas, Patricia Frias, and Nicolas Zech

Section 4: Cryopreservation of oocytes

14 Cryopreservation of human oocytes: an overview 114
Ri-Cheng Chian

15 Cryopreservation of oocytes by slow cooling 120
Andrea Borini and Giovanni Coticchio

16 Vitrification of human oocytes with different tools 131
Patrick Quinn

17 Vitrification of human oocytes using the McGill Cryoleaf protocol 144
Jack Yu Jen Huang, Seang Lin Tan, and Ri-Cheng Chian

18 Cryopreservation of human oocytes and embryos either by direct plunging into liquid nitrogen or by using an aseptic approach 157
Evgenia Isachenko, Vladimir Isachenko, Jurgen M. Weiss, and Rolf Kreienberg
Contents

19 **Vitrification of human oocytes for a donor program** 169
 Elkin Lucena, Carolina Lucena, and Sandra Mojica

20 **Obstetric and perinatal outcomes in pregnancies conceived following oocyte cryopreservation** 178
 William Buckett and Ri-Cheng Chian

Section 5: Cryopreservation of ovarian tissue

21 **Cryopreservation of ovarian tissue: an overview** 189
 Jacques Donnez, Pascale Jadoul, Olivier Donnez, Anne-Sophie van Eyck, Jean Squifflet, and Marie-Madeleine Dolmans

22 **In vitro culture of human primordial follicles** 200
 Benoit Schubert and Johan Smitz

23 **Concept of human ovarian tissue cryobanking** 213
 Vladimir Isachenko, Friedrich Gagsteiger, Evgenia Isachenko, Juergen Weiss, and Rolf Kreienberg

24 **Transplantation of cryopreserved ovarian tissues** 218
 Dror Meirow

25 **Whole ovary cryopreservation** 233
 Jason G. Bromer and Pasquale Patrizio

26 **Transplantation of whole frozen–thawed ovaries** 241
 Amir Arav and Yehudit Natan

Section 6: Ethical considerations

27 **Ethical considerations in fertility cryopreservation in young cancer patients** 248
 Edwin C. Hui

Appendix 1 **Autotransplantation of cryopreserved thawed human ovarian tissue** 257

Index 260
Contributors

Amir Arav
Institute of Animal Science
Agricultural Research Organization
Bet Dagan, Israel

Barry Behr
Department of Obstetrics and Gynecology
University of Stanford School of Medicine
Stanford, CA, USA

Andrea Borini
Tecnobios Procreazione
Centre for Reproductive Health
Bologna, Italy

Jason G. Bromer
Department of Obstetrics, Gynecology, and Reproductive Sciences
Yale University School of Medicine
New Haven, CT, USA

William Buckett
Department of Obstetrics and Gynecology
McGill University
Montréal, Québec, Canada

Yunxia Cao
Reproduction Medicine Centre
Department of Obstetrics and Gynecology
The First Affiliated Hospital of Anhui Medical University
Hefei, China

Peter T. K. Chan
Department of Urology
McGill University
Montréal, Québec, Canada

Ri-Cheng Chian
Department of Obstetrics and Gynecology
McGill University
Montréal, Québec, Canada

Giovanni Coticchio
Tecnobios Procreazione
Centre for Reproductive Health
Bologna, Italy

Marie-Madeleine Dolmans
Department of Gynecology
Université Catholique de Louvain
Brussels, Belgium

Jacques Donnez
Department of Gynecology
Université Catholique de Louvain
Brussels, Belgium

Olivier Donnez
Department of Gynecology
Université Catholique de Louvain
Brussels, Belgium

Keisuke Edashige
Laboratory of Animal Science
College of Agriculture
Kochi University
Kochi, Japan

David H. Edgar
Reproductive Services
Royal Women's Hospital
Melbourne, Australia

Patricia Frias
Fertility and Sterility National Centre
Cochabamba, Bolivia

Friedrich Gagsteiger
2IVF Zentrum Ulm
Ulm, Germany

Debra A. Gook
Reproductive Services
Royal Women's Hospital
Carlton, Victoria, Australia
List of contributors

Luc Grobet
GIGA-Research, University of Liège
Liège, Belgium

Jack Yu Jen Huang
Department of Obstetrics and Gynecology
McGill University
Montréal, Quebec, Canada

Edwin C. Hui
Faculty of Medicine
The University of Hong Kong
Hong Kong

Evgenia Isachenko
Section of Reproductive Medicine
Department of Obstetrics and Gynecology
University of Ulm
Ulm, Germany

Vladimir Isachenko
Section of Reproductive Medicine
Department of Obstetrics and Gynecology
University of Ulm
Ulm, Germany

Pascale Jadoul
Department of Gynecology
Université Catholique de Louvain
Brussels, Belgium

Magosaburo Kasai
Laboratory of Animal Science
College of Agriculture
Kochi University
Kochi, Japan

Rolf Kreienberg
Section of Reproductive Medicine
Department of Obstetrics and Gynecology
University of Ulm
Ulm, Germany

Zheng Li
Shanghai Human Sperm Bank
Shanghai Institute of Andrology
Department of Urology
Shanghai Jiaotong University
School of Medicine
Shanghai, China

Carolina Lucena
CECOLFES Bogota, Colombia

Elkin Lucena
CECOLFES Bogota, Colombia

Dror Meirow
IVF Unit, Department of Obstetrics and Gynecology
Sheba Medical Center
Tel Hashomer, Israel

Javier Mejia
Department of Obstetrics and Gynecology
Hadassah Medical Center
Hebrew University-Hadassah Medical School
Jerusalem, Israel

Sandra Mojica
CECOLFES Bogota, Colombia

Yoshiharu Morimoto
IVF Namba Clinic Osaka, Japan

Yehudit Natan
Institute of Animal Science
Agricultural Research Organization
Bet Dagan, Israel

Pasquale Patrizio
Yale University Fertility Center
New Haven, CT, USA

Yannis Prapas
Iakentro IVF Centre, Thessaloniki, Greece

Patrick Quinn
Sage IVF, A Cooper Surgical Company,
Redmond, Oregon, USA

Ariel Revel
Department of Obstetrics and Gynecology
Hadassah Medical Center
Hebrew University-Hadassah Medical School
Jerusalem, Israel

Benoit Schubert
Hôpitaux de Paris Unit of Biology of Reproduction
Groupe Hospitalier Pitié-Salpêtrière
Paris, France

Fady Shehata
Department of Obstetrics and Gynecology
McGill University
Montréal, Quèbec, Canada
Yimin Shu
IVF Program Division of Reproductive Endocrinology and Infertility
Stanford University Medical Center
Stanford, CA, USA

Gary D. Smith
Department of Obstetrics and Gynecology
University of Michigan
Ann Arbor, MI, USA

Johan Smitz
Follicle Biology Laboratory
Center for Reproductive Medicine
Free University Brussels,
Brussels, Belgium

Jean Squifflet
Department of Gynecology
Université Catholique de Louvain
Cliniques Universitaires St Luc
Brussels, Belgium

Jason E. Swain
Center for Reproductive Medicine
University of Michigan
Ann Arbor, MI, USA

Seang Lin Tan
Department of Obstetrics and Gynecology
McGill University
Montréal, Québec,
Canada

Pierre Vanderzwalmen
IVF Centers Prof. Zech
Bregenz, Austria

Anne-Sophie van Eyck
Department of Gynecology
Université Catholique de Louvain
Cliniques Universitaires St Luc
Brussels, Belgium

Jurgen M. Weiss
Department of Obstetrics and Gynecology,
University of Ulm,
Ulm, Germany

Peng Xu
Department of Andrology
Center for Reproductive Medicine
Shenyang Jinhua Hospital
Shenyang, China

Nicolas Zech
IVF Centers Prof. Zech Bregenz, Austria

Zhiguo Zhang
Reproduction Medicine Centre
Department of Obstetrics and Gynecology
The First Affiliated Hospital of Anhui
Medical University
Hefei, China
Preface

An introduction to fertility cryopreservation

Infertility or impaired fertility may be caused by a wide range of reasons, including reproductive disorders, gonadal toxic therapy (chemotherapy, radiation therapy), surgery, genetic predisposition, or exposure to environmental toxins. Among these, a large group of potential infertility patients will include survivors of childhood and adult cancer. Since the late 1970s, the incidence of cancer in children has increased by up to 20% while mortality rates have declined remarkably as a result of progress in cancer treatment [1].

Each year, more than half a million young adult men and women living in the USA have been diagnosed with some form of invasive cancer [2,3]. With earlier diagnosis and aggressive chemotherapy and/or radiotherapy coupled with bone marrow transplantation, more than 90% of teenage boys and girls as well as young adults affected by some malignancies will survive [4]. It has been estimated that approximately 1 in 250 young adults will be long-term survivors of cancer [5]. However, there is often a loss of both endocrine and reproductive function because of the sensitivity of the ovaries to cytotoxic treatment and ionizing radiation, and one of the major concerns is whether these patients will be able to have healthy children after cancer cure treatment [6,7]. Therefore, it has been suggested that providing options for preservation of fertility for men and women is not only an important issue for reproductive health but also a quality-of-life consideration [8].

Currently, there are a number of options available to try to preserve fertility. Adult males have the option of cryopreserving their sperm for later use, but this is not the case for prepubertal boys and for some post-adolescent boys [7,9,10]. Adult females have an option forembryo cryopreservation, but this is feasible only if a male partner is available and is not suitable for prepubertal girls [11]. Furthermore, this option requires time for the preparation and stimulation of the ovaries, which delays the treatment of cancer, and the ovarian stimulation may be deleterious in the context of certain types of cancer. Therefore, attempts have been made to preserve fertility with gametes (sperm and oocytes) and gonadal tissues (testicular and ovarian tissues) as well as with whole gonadal organs (ovary). Apart from sperm and embryo cryopreservation, other technologies are still considered to be largely experimental by the American Society for Reproductive Medicine (ASRM) [3] even though tremendous developments have been achieved recently, especially with cryopreservation of oocytes and ovarian tissues. In fact, it is important to be aware that developing new technologies for preserving or restoring fertility should be considered in relation to the long-term effects of such technologies, healthy babies.

It has become apparent as fertility cryopreservation is increasingly practiced throughout the world that there is a real need for a comprehensive book for fertility cryopreservation. We have endeavored to collect contributors with international expertise in all aspects of fertility cryopreservation, from gametes (sperm and oocytes) and embryos to gonadal tissues as well as whole gonadal organs and who cover all areas from basic science to clinical application. The book is divided into five sections.

Section 1 covers the scientific rationale for cryobiology by outlining aqueous solutions, mechanism of cell cryopreservation, and cryoprotectants as well as the pathway for the movement of water and cryoprotectants during cryopreservation. Here we have to mention that cryobiology is a complicated area and not all the details can be covered in these chapters.

Section 2 covers cryopreservation of human sperm and testicular tissue. It gives brief information about historical aspects of sperm cryopreservation and the protocols developed. It also covers donor program and freezing of surgically retrieved sperm.

Section 3 covers human embryo cryopreservation from pronuclear stage to cleavage stage to blastocyst stage, using slow-freezing or rapid cooling (vitrification) methods. It also covers the recent development
of blastocyst cryopreservation with the vitrification method.

Section 4 covers human oocyte cryopreservation either with slow freezing or vitrification. It briefly introduces the use of different tools to vitrify the oocytes, and the efficiency of donor programs with frozen-thawed oocytes. It also covers the initial information available about prenatal development and live births using vitrified oocytes.

Finally, Section 5 covers different technologies for the cryopreservation of ovarian tissue. It describes briefly the technologies for in vitro culture of primordial follicles isolated from ovarian tissue. It also covers transplantation of cryopreserved ovarian tissue and whole ovaries. Section 6 considers ethical issues involved in fertility cryopreservation with gametes, embryos, and gonadal tissues.

Although it is still considered a relatively new procedure for oocyte cryopreservation, ovarian tissue freezing can be followed by ovarian tissue transplantation. We hope that this book will be a helpful overview in the field of fertility cryopreservation and its development and will contribute towards its increased availability. We believe that fertility cryopreservation offers an option for people who need it urgently in order to have a possibility of having their own biological children in the near future.

References

Acknowledgements

To my mother, Dr. Hui-Shu Jin (D.V.M.), who showed me for the first time liquid nitrogen (LN$_2$) and frozen-thawed bull sperm under a microscope when I was a child at primary (elementary) school.

Ri-Cheng Chian

To my loving wife Kay, and family, who make all of this worthwhile.

Patrick Quinn