Optimal Combining and Detection

Statistical Signal Processing for Communications

With signal combining and detection methods now representing a key application of signal processing in communication systems, this book provides a range of key techniques for receiver design when multiple received signals are available. Various optimal and suboptimal signal combining and detection techniques are explained in the context of multiple-input multiple-output (MIMO) systems, including successive interference cancellation (SIC) based detection and lattice reduction (LR) aided detection. The techniques are then analyzed using performance analysis tools. The fundamentals of statistical signal processing are also covered, with two chapters dedicated to important background material. With a carefully balanced blend of theoretical elements and applications, this book is ideal for both graduate students and practicing engineers in wireless communications.

JINHO Choi is currently a Professor in the School of Engineering, and Chair of the Wireless Group, at Swansea University, UK. He is the author of Adaptive and Iterative Signal Processing in Communications (Cambridge University Press, 2006) and the recipient of the 1999 Best Paper Award for Signal Processing from EURASIP. A Senior Member of the IEEE, his current research interests include wireless communications and array/statistical signal processing.
Optimal Combining and Detection

Statistical Signal Processing for Communications

JINHO CHOI
Swansea University, UK
Contents

Preface xi
List of symbols xiii
List of abbreviations xv

1 Introduction 1
1.1 Applications in digital communications 1
1.2 Detection problems 2
1.3 Combining problems 3
1.4 Background 5
 1.4.1 Review of probability 5
 1.4.2 Random variables 6
 1.4.3 Random processes 9

2 Fundamentals of detection theory 10
2.1 Elements of hypothesis testing 10
 2.1.1 MAP decision rule 11
 2.1.2 Bayesian decision rule 15
 2.1.3 ML decision rule 17
 2.1.4 Likelihood ratio (LR) based decision rule 18
2.2 Neyman–Pearson lemma 19
2.3 Symmetric signal detection 21
 2.3.1 Error probability 22
 2.3.2 Bounds on error probability for Gaussian noise 23
 2.3.3 Chernoff bound 24
2.4 Binary waveform signal detection 25
 2.4.1 Detection of waveform signals 26
 2.4.2 Correlator detector and performance 27
2.5 M-ary signal detection 30
2.6 Signal detection in vector space 31
 2.6.1 Karhunen–Loève expansion 31
 2.6.2 Signal detection in vector space 33
 2.6.3 Pairwise error probability and Bhattacharyya bound 35
Contents

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 Signal detection with random parameters</td>
</tr>
<tr>
<td>2.7.1 LR-based detection with random parameters</td>
</tr>
<tr>
<td>2.7.2 Signals with random amplitude</td>
</tr>
<tr>
<td>2.7.3 Signals with random phase</td>
</tr>
<tr>
<td>2.7.4 Detection of random Gaussian vector</td>
</tr>
<tr>
<td>2.8 Summary and notes</td>
</tr>
<tr>
<td>Problems</td>
</tr>
</tbody>
</table>

3 Fundamentals of estimation theory

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Least square and recursive least square estimation</td>
</tr>
<tr>
<td>3.1.1 Least square estimation</td>
</tr>
<tr>
<td>3.1.2 Recursive least square approach</td>
</tr>
<tr>
<td>3.2 Minimum variance unbiased and best linear unbiased estimation</td>
</tr>
<tr>
<td>3.3 Maximum likelihood estimation</td>
</tr>
<tr>
<td>3.4 Cramer–Rao bound</td>
</tr>
<tr>
<td>3.5 MAP estimation</td>
</tr>
<tr>
<td>3.6 MMSE estimation</td>
</tr>
<tr>
<td>3.6.1 MSE cost with linear estimator</td>
</tr>
<tr>
<td>3.6.2 Conditional mean and Gaussian vectors</td>
</tr>
<tr>
<td>3.6.3 Geometrical interpretation</td>
</tr>
<tr>
<td>3.7 Example: channel estimation</td>
</tr>
<tr>
<td>3.8 Summary and notes</td>
</tr>
<tr>
<td>Problems</td>
</tr>
</tbody>
</table>

4 Optimal combining: single-signal

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Signals in space</td>
</tr>
<tr>
<td>4.2 MMSE combining with known channel vector</td>
</tr>
<tr>
<td>4.3 Information-theoretical optimality of MMSE combining</td>
</tr>
<tr>
<td>4.4 Relation with other combining techniques</td>
</tr>
<tr>
<td>4.4.1 MSNR combining</td>
</tr>
<tr>
<td>4.4.2 ML combining</td>
</tr>
<tr>
<td>4.4.3 Maximal ratio and equal gain combining</td>
</tr>
<tr>
<td>4.4.4 Generalized selection diversity combining</td>
</tr>
<tr>
<td>4.5 MMSE combining with unknown channel vector</td>
</tr>
<tr>
<td>4.6 Performance of optimal combining under fading environment</td>
</tr>
<tr>
<td>4.6.1 Performance of MRC</td>
</tr>
<tr>
<td>4.6.2 Performance of SD</td>
</tr>
<tr>
<td>4.6.3 Performance over spatially correlated channels</td>
</tr>
<tr>
<td>4.7 Summary and notes</td>
</tr>
<tr>
<td>Problems</td>
</tr>
</tbody>
</table>
5 Array signal processing and smart antenna

5.1 Antenna arrays 106
 5.1.1 Plane wave model 106
 5.1.2 Array response vector 109

5.2 AoA estimation 111
 5.2.1 ML approaches 112
 5.2.2 Subspace approaches 116
 5.2.3 Specialized algorithms for ULA 123

5.3 Beamforming methods 124
 5.3.1 MMSE beamforming 125
 5.3.2 MSINR beamforming 128
 5.3.3 MVDR beamforming 128
 5.3.4 Generalized MVDR beamformer 130

5.4 Adaptive beamforming 131
 5.4.1 LMS algorithm 132
 5.4.2 Frost's adaptive algorithm 135

5.5 Smart antenna systems 135
 5.5.1 Interference suppression in cellular systems 135
 5.5.2 Space division multiple access 136
 5.5.3 Adaptive array and switched-beam 137
 5.5.4 Practical issues 137
 5.5.5 Smart antenna for signal transmission 138

5.6 Summary and notes 141

Problems 141

6 Optimal combining: multiple-signal 143

6.1 Systems with multiple signals 143

6.2 Structures of receiver 144

6.3 Various combining approaches 146
 6.3.1 Matched filtering approach 147
 6.3.2 Zero-forcing approach 148
 6.3.3 MMSE approach 151
 6.3.4 ML and MAP combining 153

6.4 Properties of MMSE combining 155
 6.4.1 Individual MMSE combining 155
 6.4.2 Biased and unbiased SINR 156
 6.4.3 Joint MMSE combining 157

6.5 Dimension and suppression capability 159

6.6 Asymptotic analysis for random signature vectors 161

6.7 Mutual information with MMSE combiner 167
 6.7.1 Mutual information of joint MMSE 167
 6.7.2 Mutual information of individual MMSE 170
Contents

6.8 Summary and notes 172
Problems 174

7 Multiple signal detection in vector space: MIMO detection 176

7.1 SIMO detection 176
7.1.1 ML and MAP detection 177
7.1.2 Soft-decision using LLR 177
7.1.3 Optimality of MMSE combiner 180

7.2 Performance of optimal SIMO detection 182
7.2.1 An exact closed-form for PEP 184
7.2.2 Chernoff bound 185
7.2.3 Approximate PEP based on Gauss–Chebyshev quadrature 186

7.3 Optimal and suboptimal MIMO detection 188
7.3.1 MIMO systems 189
7.3.2 ML and MAP detection 192
7.3.3 Gaussian approximation 196
7.3.4 Linear detection 198

7.4 Space-time codes 200

7.5 Performance of detectors 202
7.5.1 Performance of linear detectors 202
7.5.2 Performance of ML detector 208

7.6 Summary and notes 214
Problems 214

8 MIMO detection with successive interference cancellation 217

8.1 Successive interference cancellation 217
8.2 SIC detectors 219
8.2.1 ZF-SIC detector 220
8.2.2 MMSE-SIC detector 222

8.3 Square-root algorithm for MMSE-SIC detector 224
8.4 Principle of partial MAP detection 229

8.5 Performance analysis of SIC detection 233

8.6 Approaches to mitigate error propagation 235
8.6.1 Ordering 235
8.6.2 SIC-list detection 238
8.6.3 Channel coding 238

8.7 SIC receiver for coded signals 239
8.7.1 Layered transmission for SIC receiver 239
8.7.2 Information-theoretical optimality of MMSE-SIC receiver 242

8.8 Summary and notes 244
Problems 244
Contents

9 Lattice-reduction-aided MIMO detection 246

9.1 Lattices and signal constellations 246
 9.1.1 Lattices 246
 9.1.2 Signal constellation as a subset of lattice 248

9.2 MIMO detection over lattices 249
 9.2.1 LR-based extended ML detection 250
 9.2.2 LR-based ZF and MMSE detection 252
 9.2.3 LR-based ZF-SIC and LR-based MMSE-SIC detection 254
 9.2.4 LR-based ML detection 255

9.3 Application to MIMO precoding 257
 9.3.1 System model 257
 9.3.2 Precoders 258

9.4 Lattice reduction for two-dimensional lattices 261
 9.4.1 QR factorization 261
 9.4.2 Lattice basis reduction method 264

9.5 LLL algorithm: a lattice reduction algorithm 270
 9.5.1 LLL reduced basis 270
 9.5.2 LLL algorithm 272
 9.5.3 Another version of LLL algorithm 274

9.6 Summary and notes 277
 Problems 278

10 Analysis of LR-based MIMO detection 280

10.1 Assumptions for analysis 280

10.2 Analysis of two-dimensional systems 281
 10.2.1 Performance analysis 281
 10.2.2 Computational complexity 284

10.3 Performance of LR-based SIC detector for higher-dimensional lattices 285
 10.3.1 Performance of the ML detector 286
 10.3.2 Properties of LLL reduced basis 287
 10.3.3 Diversity gain of LR-based SIC detector 291

10.4 Summary and notes 293
 Problems 293

Appendix 1 Review of signals and systems 295
Appendix 2 A brief review of entropy, mutual information, and channel capacity 299
Appendix 3 Important properties of matrices and vectors 308
Appendix 4 Lattice theory 314
References 322
Index 328
Preface

Statistical signal processing is a set of statistical techniques that have been developed to deal with random signals in a number of applications. Since it is rooted in detection and estimation theory, which are well established in statistics, the fundamentals are not changed although new applications have emerged. Thus, I did not have any strong motivation to write another book on statistical signal processing until I was convinced that there was a sufficient amount of new results to be put together with fundamentals of detection and estimation theory in a single book.

These new results have emerged in applying statistical signal processing techniques to wireless communications since 1990. We can consider a few examples here. The first example is smart antenna. Smart antenna is an application of array signal processing to cellular systems to exploit spatial selectivity for improving spectral efficiency. Using antenna arrays, the spatial selectivity can be used to mitigate incoming interfering signals at a receiver or control the transmission direction of signals from a transmitter to avoid any interference with the receivers which do not want to receive the signal. The second example is based on the development of code division multiple access (CDMA) systems for cellular systems. In CDMA systems, multiple users are allowed to transmit their signals simultaneously with different signature waveforms. The matched filter can be employed to detect a desired signal with its signature waveform. This detector is referred to as the single-user detector as it only detects one user's signal. Although this single-user detector is able to provide a reasonable performance, it is also possible to improve the performance to detect multiple signals simultaneously. This detector is called the multiuser detector. The third example is multiple-input multiple-output (MIMO) systems. In MIMO systems, multiple signals are transmitted and multiple signals are received. Thus, it is required to detect multiple signals simultaneously. These new applications promote advances of statistical signal processing. In particular, new and advanced techniques for signal combining and detection have emerged.

This book is intended to provide fundamentals of signal detection and estimation together with new results that have been developed for the new applications mentioned above.

I would like to thank many people for supporting this work, in particular: I. M. Kim (Queens University), C. Ling (Imperial College), and F. Adachi (Tohoku University). They helped me by providing constructive comments and proofreading. Needless to say the responsibility for the remaining errors, typos, unclear passages, and weaknesses is mine. I would also like to thank those people who inspire and encourage me all the time.
F. Adachi (Tohoku University) for encouragement as my mentor, J. Ritcey (University of Washington) for long-term friendship, and many others including my students for useful discussions.

Special thanks go to J. Ha, Y. Han, and H. J. Lee (Korea Advanced Institute of Science and Technology) who hosted me and offered an opportunity to teach a summer course with most of the materials in this book in 2008 at Information Communications University which became part of Korea Advanced Institute of Science and Technology in 2009. It was my great pleasure to teach young and talented students at Information Communications University. Their comments were very helpful in shaping this book.

Finally, I would like to offer very special thanks to my wife, Kila, and children, Seji and Wooji, for their generous support, understanding, and love.
Symbols

General

\[j = \sqrt{-1} \]
\[\mathbb{F}_2: \text{binary field} \]
\[\mathbb{Z}: \text{set of integer numbers} \]
\[\mathbb{R}^n: \text{real-valued } n\text{-dimensional vector space} \]
\[\mathbb{C}^n: \text{complex-valued } n\text{-dimensional vector space} \]
\[\times: \text{Cartesian product (if it does not mean the product)} \]
\[|\mathcal{A}|: \text{cardinality of set } \mathcal{A} \text{ or the number of the elements in } \mathcal{A} \]
\[\emptyset: \text{empty set} \]
\[\cup: \text{set union} \]
\[\cap: \text{set intersection} \]
\[\setminus: \text{set difference or set-minus} \]
\[\mathcal{A}^c: \text{the complementary set of set } \mathcal{A} \]
\[u(x): \text{step function} \]
\[\delta(x): \text{Dirac delta function} \]

Statistics related symbols

\[f_X(x): \text{pdf of random variable } X \]
\[F_X(x): \text{cdf of random variable } X \]
\[\Pr(\mathcal{A}): \text{probability of random event } \mathcal{A} \]
\[\mathbb{E}[X]: \text{statistical expectation of } X \]
\[\text{Var}(X): \text{variance of } X \]
\[Q(x): \text{Q-function, } Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz \]
\[\mathcal{N}(x, \mathbf{R}): \text{Gaussian probability density function with mean } x \text{ and covariance } \mathbf{R} \]
\[\mathcal{CN}(x, \mathbf{R}): \text{circularly symmetric complex Gaussian probability density function with mean } x \text{ and covariance } \mathbf{R} \]

Vector/Matrix related symbols

\[|| \cdot ||_p: p\text{-norm} \]
\[|| \cdot ||_F: \text{Frobenius norm} \]
\[(\cdot)^T: \text{transpose} \]
\[(\cdot)^H: \text{Hermitian transpose} \]
\[\text{det}(\cdot): \text{determinant of a square matrix} \]
\[\text{tr}(\cdot): \text{trace of a square matrix} \]
\[\text{Diag}(a_1, a_2, \ldots, a_N): N \times N \text{ diagonal matrix whose elements are } a_1, a_2, \ldots, a_N \]
List of symbols

\[\mathbf{a}\]_n: \text{n}th element of a vector \(\mathbf{a}\)

\[\mathbf{A}\]_{m,n}: \text{(m, n)th element of a matrix} \ \mathbf{A}

\[\mathbf{A}\]_{m_1:m_2,n_1:n_2}: \text{a submatrix of} \ \mathbf{A} \ \text{obtained by taking the elements in the} \ m_1 \text{th to} \ m_2 \text{th columns and the} \ n_1 \text{th to} \ n_2 \text{th rows}

\[\mathbf{A}\]_{:,n}: \text{n}th column vector of \ \mathbf{A}

\[\mathbf{A}\]_{n,:}: \text{n}th row vector of \ \mathbf{A}
Abbreviations

- **AR** autoregressive
- **AR V** array response vector
- **ASK** amplitude shift keying
- **AWGN** additive white Gaussian noise
- **BER** bit error rate
- **BSC** binary symmetric channel
- **cdf** cumulative distribution function
- **CDMA** code division multiple access
- **CLT** central limit theorem
- **CRB** Cramer–Rao Bound
- **CSCG** circularly symmetric complex Gaussian
- **CVP** closed vector problem
- **DFE** decision feedback equalizer
- **DMC** discrete memoryless channel
- **DMI** direct matrix inversion
- **DPSK** differential phase shift keying
- **EGC** equal gain combining
- **FA** false alarm
- **GLR** generalized likelihood ratio
- **GLRT** generalized likelihood ratio test
- **GSDC** generalized selection diversity combining
- **iid** independent and identically distributed
- **ISI** intersymbol interference
- **LCMV** linearly constrained minimum variance
- **LLR** log-likelihood ratio
- **LMS** least mean square
- **LR** lattice reduction or likelihood ratio
- **LS** least square
- **MAC** multiple access channel
- **MAP** maximum a posteriori probability
- **MIMO** multiple-input multiple-output
- **MISO** multiple-input single-output
- **ML** maximum likelihood
- **MLE** maximum likelihood estimate
List of abbreviations

MMSE minimum mean square error
MRC maximal ratio combining
MSE mean square error
MSNR maximum signal to noise ratio
MUSIC multiple signal classification
MVDR minimum variance distortionless response
MVUE minimum variance unbiased
PAM pulse amplitude modulation
pdf probability density function
PEP pairwise error probability
QAM quadrature amplitude modulation
QPSK quadrature phase shift keying
RLS recursive least square
ROC receiver operating characteristics
SD selection diversity
SDR software defined radio
SLLN strong law of large numbers
SMI sample matrix inversion
SIC successive interference cancellation
SIMO single-input multiple-output
SISO single-input single-output
SINR signal to interference-plus-noise ratio
SNR signal to noise ratio
SVP shortest vector problem
ULA uniform linear array
WLLN weak law of large numbers
WLS weighted least square
WSS wide-sense stationary
ZF zero-forcing