### STRING THEORY AND PARTICLE PHYSICS

String theory is one of the most active branches of theoretical physics, and has the potential to provide a unified description of all known particles and interactions. This book is a systematic introduction to the subject, focused on the detailed description of how string theory is connected to the real world of particle physics.

Aimed at graduate students and researchers working in high-energy physics, it provides explicit models of physics beyond the Standard Model. No prior knowledge of string theory is required as all necessary material is provided in the introductory chapters. The book provides particle phenomenologists with the information needed to understand string theory model building, and describes in detail several alternative approaches to model building, such as heterotic string compactifications, intersecting D-brane models, D-branes at singularities, and F-theory.

LUIS E. IBÁÑEZ is Professor of Theoretical Physics at the Universidad Autónoma de Madrid and member of the Instituto de Física Teórica-UAM/CSIC. One of the world leaders in physics beyond the Standard Model of particle physics, he has made important contributions to the construction of the supersymmetric Standard Model and superstring phenomenology.

ANGEL M. URANGA is Research Professor at the Consejo Superior de Investigaciones Científicas at the Instituto de Física Teórica-UAM/CSIC. He is one of the leading young string theorists working in the construction of models of particle physics, in particular due to his contribution on the use of D-branes to build realistic brane-world models.

Cover illustration: the authors thank Jorge Ibáñez-Albajar for his help with the design of the cover image for this book.

Cambridge University Press 978-0-521-51752-2 - String Theory and Particle Physics: An Introuction to String Phenomenology Luis E. Ibáñez and Angel M. Uranga Frontmatter More information Cambridge University Press 978-0-521-51752-2 - String Theory and Particle Physics: An Introuction to String Phenomenology Luis E. Ibáñez and Angel M. Uranga Frontmatter More information

# STRING THEORY AND PARTICLE PHYSICS: AN INTRODUCTION TO STRING PHENOMENOLOGY

### LUIS E. IBÁÑEZ Universidad Autónoma de Madrid and Instituto de Física Teórica IFT-UAM/CSIC

ANGEL M. URANGA Instituto de Física Teórica IFT-UAM/CSIC



CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521517522

© L. Ibáñez and A. Uranga 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Ibáñez, Luis E., 1952-

String theory and particle physics : an introduction to string phenomenology / Luis E. Ibáñez, Angel M. Uranga.

p. cm. Includes bibliographical references and index. ISBN 978-0-521-51752-2 (Hardback) 1. String models. I. Uranga, A. (Angel) II. Title. QC794.6.S85123 2012 539.7/258-dc23

2011035562

### ISBN 978-0-52151752-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-51752-2 - String Theory and Particle Physics: An Introuction to String Phenomenology Luis E. Ibáñez and Angel M. Uranga Frontmatter <u>More information</u>

To our families

[...] vi el Aleph, desde todos los puntos, vi en el Aleph la tierra, y en la tierra otra vez el Aleph y en el Aleph la tierra [...] porque mis ojos habían visto ese objeto secreto y conjetural, cuyo nombre usurpan los hombres, pero que ningún hombre ha mirado: el inconcebible universo.

Excerpt from *El Aleph* by Jorge Luis Borges, © 1995, Maria Kodama © 2011, Random House Mondadori, S.A.

# Contents

|   | Preface                                   |                                                      | <i>page</i> xi |
|---|-------------------------------------------|------------------------------------------------------|----------------|
| 1 | The Standard Model and beyond             |                                                      | 1              |
|   | 1.1                                       | The Standard Model of particle physics               | 1              |
|   | 1.2                                       | Grand Unified Theories                               | 4              |
|   | 1.3                                       | The SM fine-tuning puzzles                           | 12             |
|   | 1.4                                       | Extra dimensions                                     | 18             |
| 2 | Supe                                      | 25                                                   |                |
|   | 2.1                                       | Four-dimensional $\mathcal{N} = 1$ supersymmetry     | 25             |
|   | 2.2                                       | SUSY breaking                                        | 32             |
|   | 2.3                                       | $\mathcal{N} = 1$ Supergravity                       | 35             |
|   | 2.4                                       | Extended supersymmetry and supergravity              | 37             |
|   | 2.5                                       | Non-perturbative dynamics in supersymmetric theories | 41             |
|   | 2.6                                       | Low-energy supersymmetry and the MSSM                | 44             |
| 3 | Intro                                     | 62                                                   |                |
|   | 3.1                                       | Generalities                                         | 63             |
|   | 3.2                                       | Closed bosonic string                                | 72             |
|   | 3.3                                       | Open bosonic string                                  | 91             |
|   | 3.4                                       | Unoriented bosonic string theory                     | 97             |
| 4 | Supe                                      | 103                                                  |                |
|   | 4.1                                       | Fermions on the worldsheet                           | 103            |
|   | 4.2                                       | Type II string theories                              | 104            |
|   | 4.3                                       | Heterotic string theories                            | 117            |
|   | 4.4                                       | Type I string theory                                 | 126            |
|   | 4.5                                       | Summary                                              | 134            |
| 5 | Toroidal compactification of superstrings |                                                      | 136            |
|   | 5.1                                       | Type II superstrings                                 | 136            |
|   | 5.2                                       | Heterotic superstrings                               | 141            |
|   | 5.3                                       | Type I toroidal compactification and D-branes        | 146            |

| Cambridge University Press                                                                     |
|------------------------------------------------------------------------------------------------|
| 978-0-521-51752-2 - String Theory and Particle Physics: An Introuction to String Phenomenology |
| Luis E. Ibáñez and Angel M. Uranga                                                             |
| Frontmatter                                                                                    |
| More information                                                                               |

| viii |      | Contents                                                                    |     |
|------|------|-----------------------------------------------------------------------------|-----|
| 6    | Bran | es and string duality                                                       | 155 |
|      | 6.1  | D-branes in string theory                                                   | 155 |
|      | 6.2  | Supergravity description of non-perturbative states                         | 165 |
|      | 6.3  | Strings at strong coupling and 10d string duality                           | 168 |
|      | 6.4  | AdS/CFT and gauge/gravity dualities                                         | 178 |
|      | 6.5  | Brane-antibrane systems and non-BPS D-branes                                | 180 |
| 7    | Cala | bi–Yau compactification of heterotic superstrings                           | 185 |
|      | 7.1  | A road map for string compactifications                                     | 185 |
|      | 7.2  | Generalities on Calabi-Yau compactification                                 | 186 |
|      | 7.3  | Heterotic CY compactifications: standard embedding                          | 199 |
|      | 7.4  | Heterotic CY compactifications: non-standard embedding                      | 206 |
|      | 7.5  | CY compactifications of Hořava–Witten theory                                | 211 |
| 8    | Hete | rotic string orbifolds and other exact CFT constructions                    | 215 |
|      | 8.1  | Toroidal orbifolds                                                          | 215 |
|      | 8.2  | Heterotic compactification on toroidal orbifolds                            | 218 |
|      | 8.3  | Non-standard embeddings and Wilson lines                                    | 235 |
|      | 8.4  | Asymmetric orbifolds                                                        | 242 |
|      | 8.5  | The fermionic construction                                                  | 246 |
|      | 8.6  | Gepner models                                                               | 252 |
| 9    | Hete | rotic string compactifications: effective action                            | 264 |
|      | 9.1  | A first look at the heterotic 4d $\mathcal{N} = 1$ effective action         | 264 |
|      | 9.2  | Heterotic M-theory effective action                                         | 272 |
|      | 9.3  | Effective action of orbifold models                                         | 273 |
|      | 9.4  | Gauge couplings and Kac–Moody level                                         | 280 |
|      | 9.5  | Anomalous $U(1)$ s and Fayet–Illiopoulos terms                              | 282 |
|      | 9.6  | T-duality and the effective action                                          | 286 |
|      | 9.7  | Orbifold model building revisited                                           | 293 |
|      | 9.8  | Higher Kac–Moody level models and string GUTs                               | 296 |
| 10   | Туре | IIA orientifolds: intersecting brane worlds                                 | 298 |
|      | 10.1 | Type II on CY and orientifolding                                            | 298 |
|      | 10.2 | Intersecting D6-branes in flat 10d space                                    | 302 |
|      | 10.3 | Compactification and an example of a toroidal model                         | 306 |
|      | 10.4 | Introducing O6-planes                                                       | 314 |
|      | 10.5 | Non-supersymmetric particle physics models                                  | 320 |
|      | 10.6 | Supersymmetric particle physics models in $T^6/Z_2 \times Z_2$ orientifolds | 325 |
|      | 10.7 | Generalizations and related constructions                                   | 329 |
| 11   | Туре | IIB orientifolds                                                            | 340 |
|      | 11.1 | Generalities of type IIB orientifold actions                                | 340 |
|      | 11.2 | Type IIB toroidal orientifolds                                              | 341 |
|      | 11.3 | D-branes at singularities                                                   | 356 |

|    |       | Contents                                                      | ix  |
|----|-------|---------------------------------------------------------------|-----|
|    | 11.4  | Magnetized D-brane models                                     | 370 |
|    | 11.5  | F-theory model building                                       | 381 |
| 12 | Туре  | II compactifications: effective action                        | 396 |
|    | 12.1  | The closed string moduli in type II orientifolds              | 396 |
|    | 12.2  | Kähler metrics of matter fields in toroidal orientifolds      | 404 |
|    | 12.3  | The gauge kinetic function                                    | 408 |
|    | 12.4  | U(1)'s and FI terms                                           | 412 |
|    | 12.5  | Superpotentials and Yukawa couplings in type II orientifolds  | 416 |
|    | 12.6  | Effective action of an MSSM-like example                      | 426 |
|    | 12.7  | Yukawa couplings in local F-theory models                     | 429 |
| 13 | Strin | g instantons and effective field theory                       | 432 |
|    | 13.1  | Instantons in field theory and string theory                  | 432 |
|    | 13.2  | Fermion zero modes for D-brane instantons                     | 441 |
|    | 13.3  | Phenomenological applications                                 | 446 |
| 14 | Flux  | compatifications and moduli stabilization                     | 455 |
|    | 14.1  | Type IIB with 3-form fluxes                                   | 455 |
|    | 14.2  | Fluxes in type II toroidal orientifolds                       | 467 |
|    | 14.5  | D-branes and nuxes                                            | 475 |
|    | 14.4  | Fluxes in other string constructions                          | 479 |
| 15 | Mod   | listabilization and supersummative breaking in string theory. | 402 |
| 15 | 15 1  | SUSV and SUSV breaking in string compactifications            | 485 |
|    | 15.1  | SUSY breaking and moduli fixing in beterotic models           | 485 |
|    | 15.2  | SUSY breaking and moduli fixing in type II orientifolds       | 489 |
|    | 15.4  | Soft terms from fluxes in type IIB orientifolds               | 495 |
|    | 15.5  | General parametrization of moduli/dilaton induced SUSY        |     |
|    |       | breaking                                                      | 501 |
|    | 15.6  | Modulus/dilaton dominated SUSY breaking spectra and the LHC   | 510 |
|    | 15.7  | Other mediation mechanisms in string theory                   | 515 |
| 16 | Furtl | her phenomenological properties. Strings and cosmology        | 518 |
|    | 16.1  | Scales and unification in string theory                       | 518 |
|    | 16.2  | Axions in string theory                                       | 528 |
|    | 16.3  | R-parity and <i>B/L</i> -violation                            | 531 |
|    | 16.4  | Extra $U(1)$ gauge bosons                                     | 534 |
|    | 16.5  | Strings at the weak scale                                     | 540 |
|    | 16.6  | Strings and cosmology                                         | 543 |
| 17 | The s | space of string vacua                                         | 558 |
|    | 17.1  | General properties of the massless spectrum in string         |     |
|    | . – - | compactifications                                             | 558 |
|    | 17.2  | The flavour landscape                                         | 566 |

| Cambridge University Press                                                                     |
|------------------------------------------------------------------------------------------------|
| 978-0-521-51752-2 - String Theory and Particle Physics: An Introuction to String Phenomenology |
| Luis E. Ibáñez and Angel M. Uranga                                                             |
| Frontmatter                                                                                    |
| More information                                                                               |

| Х          | Contents                                                                   |     |
|------------|----------------------------------------------------------------------------|-----|
| 17.3       | The flux landscape                                                         | 570 |
| 17.4       | Outlook                                                                    | 573 |
| Appendix A | Modular functions                                                          | 576 |
| Appendix B | Some topological tools                                                     | 579 |
| B.1        | Forms and cycles: cohomology and homology                                  | 579 |
| B.2        | Hodge dual                                                                 | 584 |
| B.3        | Application: <i>p</i> -form gauge fields                                   | 585 |
| B.4        | Homotopy groups                                                            | 588 |
| Appendix C | Spectrum and charges of a semi-realistic $\mathbb{Z}_3$ heterotic orbifold | 589 |
| Appendix D | Computation of RR tadpoles                                                 | 592 |
| D.1        | RR tadpoles in type I theory                                               | 592 |
| D.2        | Tadpoles for $T^6/Z_N$ type IIB orientifolds                               | 595 |
| Appendix E | CFT toolkit                                                                | 597 |
| E.1        | Conformal symmetry and conformal fields                                    | 597 |
| E.2        | Vertex operators and structure of scattering amplitudes                    | 599 |
| E.3        | Kac–Moody algebras                                                         | 602 |
| E.4        | $\mathcal{N} = 2$ superconformal field theories                            | 604 |
| E.5        | Rational conformal field theory and simple currents                        | 604 |
| Biblic     | Bibliography                                                               |     |
| Refere     | References                                                                 |     |
| Index      |                                                                            | 657 |

## Preface

String theory is the leading candidate for a consistent quantum theory of gravity. It has also become a central area of research in mathematical physics, with different additional applications which range from heavy ion physics to condensed matter, cosmology or mathematics. Notwithstanding this, the excitement fostered in 1984 actually came from the coexistence of chiral anomaly free gauge theories and gravity in string theory, raising the expectation of an ultimate unification of Standard Model (SM) and gravitational interactions into a consistent string quantum theory. The enthusiasm was thus motivated by particle physics phenomenological goals.

Since then much effort has been dedicated to explore the possible embedding of the SM of particle physics in string theory, a field commonly known as string phenomenology. However, although there are by now several excellent books introducing the general field of string theory, there is no systematic and detailed coverage of the large body of knowledge accumulated in string phenomenology. This lack has become particularly acute after the duality revolution of 1995, when the advent of D-branes made the string engineering of non-trivial gauge theories more flexible, thus providing new avenues to realize the SM in string theory.

Consequently, and due to the seemingly imposing complexity of string theory, this field has not permeated much to many particle physics phenomenologists and model builders, who feel reluctant to struggle with a jungle of papers and reviews to extract the phenomenological aspects of string theory.

The main purpose of this book is to provide an elementary introduction to string theory, and to string phenomenology, in a systematic and self-contained way. It should be useful to particle phenomenologists and model builders, both senior and fresh. It will also be useful to string theorists interested in learning how (and how far) string theory may reproduce the observed SM physics.

The book has six chapters with introductory material. The first presents a brief summary of the SM structure, its puzzles, and several of its extensions, including Grand Unified Theories and extra dimensions. The second introduces the basic aspects of supersymmetry and its application to particle physics models, most notably the Minimal Supersymmetric xii

#### Preface

Standard Model (MSSM). These first two chapters serve to fix the notation and introduce concepts, appearing later when building string theory models of particle physics.

Chapters 3 to 6 constitute an introduction to the basics of string theory including the bosonic string (Chapter 3), and the heterotic, type II and type I superstrings (Chapter 4). The simplest toroidal compactification to four dimensions is described in Chapter 5, which also provides a first glimpse of D-branes. Chapter 6 describes D-branes and their role in string theory, as well as the different non-perturbative dualities in the theory. Our presentation in these chapters aims at getting the main physical results in the most comfortable way for the non-initiated, avoiding the machinery of conformal field theory (partly covered in an appendix). These four chapters are self-contained and constitute by themselves an introductory course on string theory, useful also to graduate students searching for a first contact with the formalism of string theory. String theorists acquainted with this material may safely jump over to Chapter 7.

Chapters 7 to 12 give a relatively detailed description of string compactifications giving rise to chiral theories in four dimensions, with emphasis on those with  $\mathcal{N} = 1$  supersymmetry and a particle content close to the SM. They include different heterotic constructions, in Chapters 7 and 8, whose low-energy effective action is covered in Chapter 9, as well as type II orientifolds (and M- and F-theory related constructions), in Chapters 10 and 11, with their effective action discussed in Chapter 12. Detailed explicit examples of MSSM-like models are presented for the different compactification methods. The purpose is to enable the reader to obtain the massless spectrum and effective lagrangian of these string constructions, so as to grasp their contact to SM physics.

Chapters 13 and 14 introduce additional ingredients, most notably string instantons and closed string fluxes. Those ingredients give rise to extra contributions to the effective action relevant for aspects like Yukawa couplings, neutrino masses and moduli stabilization. Chapter 15 continues the study of moduli fixing and its interplay with supersymmetry breaking, reaching up to the generation of low-energy supersymmetry breaking masses in MSSM-like models. Further phenomenological issues are discussed in Chapter 16, and Chapter 17 contains a general discussion of the space of string vacua, in particular those resembling the SM or MSSM.

The optimum use of this book requires basic background of quantum field theory, group theory, and elementary notions of the SM of particle physics and general relativity. We have attempted to reduce the mathematics to a minimum, and to introduce the necessary definitions where required (including an appendix with the main geometrical and topological concepts used in the text).

We mark with an asterisk \* those sections or subsections containing relevant material which may be skipped in a first reading of the book. Concerning the references, we have preferred not to insert citations in the main text and give a Bibliography for each chapter at the end of the book. These include some references to original literature, but mostly to reviews useful to the reader interested in further details. The list of references is (admittedly and necessarily) very incomplete and we apologize to many of our colleagues

### Preface

xiii

whose relevant work has not been cited. Finally, we have set up a webpage to publish corrections and errata for this book:

#### https://sites.google.com/site/stringtheoryandparticlephysics/

Many people and institutions have contributed to make this book possible. We thank our home institutions, the Departamento de Física Teórica of the Universidad Autónoma de Madrid (UAM), and the Instituto de Física Teórica IFT-UAM/CSIC of the Consejo Superior de Investigaciones Científicas and UAM. We thank our colleagues there, for creating a supportive and stimulating environment. A.M.U. also thanks the CERN TH group, for being "home" during the first half of this project. We are grateful to our colleagues and collaborators, for all the discussions during these years. In particular, we thank Luis Aparicio, Gerardo Aldazabal, Pablo G. Cámara, David G. Cerdeño, Anamaria Font, Iñaki Garcia-Etxebarria, Fernando Marchesano, Christoffer Petersson, Fernando Quevedo, Graham Ross, and Pablo Soler, for carefully reading selected chapters and making many improving suggestions. We also thank Bert Schellekens for discussions and for providing us with edited figures from his work. We are also grateful to the Cambridge University Press team, and especially to Simon Capelin, for suggesting the project, and for the gentle management throughout the process of writing. We finally thank our families, for giving the patience and support that is always required in such a demanding enterprise. Cambridge University Press 978-0-521-51752-2 - String Theory and Particle Physics: An Introuction to String Phenomenology Luis E. Ibáñez and Angel M. Uranga Frontmatter More information