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Paths in Graphs

1.1 Introduction to Graph Theory

A graph G(V ,E) is a structure consisting of a set of vertices V = {v1,v2, . . .}

and a set of edges E = {e1,e2, . . .}; each edge e has two endpoints, which are

vertices, and they are not necessarily distinct.

Unless otherwise stated, both V and E are assumed to be finite. In this case

we say that G is finite.

For example, consider the graph in Figure 1.1. Here, V = {v1,v2,v3,v4,v5},

E= {e1,e2,e3,e4,e5}. The endpoints of e2 are v1 and v2. Alternatively, we say

that e2 is incident on v1 and v2. The edges e4 and e5 have the same endpoints

and are therefore called parallel. Both endpoints of e1 are the same – v1; such

an edge is called a self-loop.

The degree of a vertex v, d(v), is the number of times v is used as an endpoint.

Clearly, a self-loop uses its endpoint twice. Thus, in our example, d(v1) = 4,

d(v2)= 3.Also, a vertexwhose degree is zero is called isolated. In our example,

v3 is isolated since d(v3) = 0.

Lemma 1.1 In a finite graph the number of vertices of odd degree is even.

Proof: Let |V | and |E| be the number of vertices and edges, respectively. It is

easy to see that

|V|∑

i=1

d(vi) = 2 · |E|,

since each edge contributes two to the left-hand side: one to the degree of each

of its two endpoints if they are distinct; and two to the degree of its endpoint if

the edge is a self-loop. For the left-hand side to sum up to an even number, the

number of odd terms must be even. �
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2 1 Paths in Graphs
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Figure 1.1: Example of a graph.

The notation u
e

v means that the edge e is incident on vertices u and v. In

this case we also say that e connects vertices u and v, or that vertices u and v

are adjacent.

A path, P, is a sequence of vertices and edges, interweaved in the following

way: P starts with a vertex, say v0, followed by an edge e1 incident to v0,

followed by the other endpoint v1 of e1, and so on. We write

P : v0
e1 v1

e2 v2 · · ·

If P is finite, it ends with a vertex, say vl. We call v0 the start-vertex of P and

vl the end-vertex of P. The number of edge appearances in P, l, is called the

length of P. If l = 0, then P is said to be empty, but it has a start-vertex and

an end-vertex, which are identical. (We shall not use the term “path” unless a

start-vertex exists.)

In a path, edges and vertices may appear more than once, unless otherwise

stated. If no vertex appears more than once, and therefore no edge can appear

more than once, the path is called simple.

A circuit, C, is a finite path in which the start and end vertices are identical.

However, an empty path is not considered a circuit. By definition, the start and

end vertices of a circuit are the same, and if there is no other repetitionof a vertex,

the circuit is called simple. However, a circuit of length two,a
e

b
e

a, where

the same edge, e, appears twice, is not considered simple. (For a longer circuit,

it is superfluous to state that if it is simple, then no edge appears more than

once.) A self-loop is a simple circuit of length one.

If for every two verticesu and v of a graphG, there is a (finite) path that starts

in u and ends in v, then G is said to be connected.

A digraph or directed graph G(V ,E) is defined similarly to a graph, except

that the pair of endpoints of every edge is now ordered. If the ordered pair of
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1.2 Computer Representation of Graphs 3

endpoints of a (directed) edge e is (u,v), we write

u
e

−→ v.

The vertex u is called the start-vertex of e; and the vertex, v, the end-vertex of

e. The edge e is said to be directed fromu to v. Edges with the same start-vertex

and the same end-vertex are called parallel. If u �= v, u
e1
−→ v and v

e2
−→u, then

e1 and e2 are antiparallel. An edge u−→ u is called a self-loop.

The out-degree dout(v) of vertex v is the number of (directed) edges having

v as their start-vertex; in-degree din(v) is similarly defined. Clearly, for every

finite digraph G(V ,E),

∑

v∈V

din(v) =
∑

v∈V

dout(v).

A directed path is similar to a path in an undirected graph; if the sequence of

edges is e1,e2, · · · then for every i� 1, the end-vertex of ei is the start-vertex of

ei+1. The directed path is simple if no vertex appears on it more than once. A

finite directed pathC is a directed circuit if the start-vertex and end-vertex ofC

are the same. If C consists of one edge, it is a self-loop. As stated, the start and

end vertices of C are identical, but if there is no other repetition of a vertex, C

is simple. A digraph is said to be strongly connected if, for every ordered pair

of vertices (u,v) there is a directed path which starts at u and ends in v.

1.2 Computer Representation of Graphs

To understand the time and space complexities of graph algorithms one needs

to know how graphs are represented in the computers memory. In this section

two of the most commonmethods of graph representation are briefly described.

Let us consider graphs and digraphs that have no parallel edges. For such

graphs, the specification of the two endpoints is sufficient to specify the edge;

for digraphs, the specification of the start-vertex and the end-vertex is sufficient.

Thus, we can represent such a graph or digraph ofn vertices by ann×nmatrix

M, whereMij = 1 if there is an edge connecting vertex vi to vj, andMij = 0, if

not. Clearly, in the case of (undirected) graphs, Mij = 1 implies that Mji = 1;

or in other words,M is symmetric. But in the case of digraphs, anyn×nmatrix

of zeros and ones is possible. This matrix is called the adjacency matrix.

Given the adjacencymatrixM of a graph, one can computed(vi) by counting

the number of ones in the i-th row, except that a one on the main diagonal

represents a self-loop and contributes two to the count. For a digraph, the number
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4 1 Paths in Graphs

of ones in the i-th row is equal to dout(vi), and the number of ones in the j-th

column is equal to din(vj).

The adjacencymatrix is not an efficient representation of the graph if the graph

is sparse; namely, the number of edges is significantly smaller than n2. In these

cases, it is more efficient to use the incidence lists representation, described

later. We use this representation, which also allows parallel edges, in this book

unless stated otherwise.

A vertex array is used. For each vertex v, it lists v’s incident edges and a

pointer indicating the current edge. The incidence list may simply be an array

or may be a linked list. Initially, the pointer points to the first edge on the list.

Also, we use an edge array, which tells us for each edge its two endpoints (or

start-vertex and end-vertex, in the case of a digraph).

Assume we want an algorithm TRACE(s,P), such that given a finite graph

G(V ,E) and a start-vertex s∈V traces a maximal path P that starts at s and does

not use any edge more than once. Note that by “maximal” we do not mean that

the resulting path, P, will be the longest possible; we only mean that P cannot

be extended, that is, there are no unused incident edges at the end-vertex.

We can trace a path starting at s by taking the first edge e1 on the incidence list

of s, marking e1 as “used” in the edge array, and looking up its other endpoint

v1 (which is s if e1 is a self-loop). Next, use the vertex array to find the pointer

to the current edge on the list of v1. Scan the incidence list of v1 for the first

unused edge, take it, and so on. If the scanning hits the last edge and it is used,

TRACE(s,P) halts. A PASCAL-like description of TRACE(s,P) is presented

in Algorithm 1.1. Here is a list of the data structures it uses:

(i) A vertex table such that, for every v ∈ V , it includes the following:

– A list of the edges incident on v, which ends with NIL

– A pointer N(v) to the current item in this list. Initially, N(v) points to

the first edge on the list (or to NIL, if the list is empty).

(ii) An edge table such that every e∈ E consists of the following:

– The two endpoints of e

– A flag that indicates whether e is used or unused. Initially, all edges are

unused.

(iii) An array (or linked list) P of edges that is initially empty, and when

TRACE(s,P) halts, will contain the resulting path.

Notice that in each application of the “while” loop of TRACE (lines 2–10 in

Algorithm 1.1), either N(v) is moved to the next item on the incidence list of

v (line 4), or lines 6–10 are applied, but not both. The number of times line
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1.2 Computer Representation of Graphs 5

Procedure TRACE(s,P)

1 v← s

2 while N(v) points to an edge (and not to NIL) do

3 if N(v) points to a used edge do

4 change N(v) to point to the next item on the list

5 else do

6 e←N(v)

7 change the flag of e to used

8 add e to the end of P

9 use the edge table to find the second endpoint of e, say u

10 v← u

Algorithm 1.1: The TRACE algorithm.

4 is applied is clearly O(|E|). The number of times lines 6–10 are applied is

also O(|E|), since the flag of an unused edge changes to used, and each of these

lines takes time bounded by a constant to run. Thus, the time complexity of

TRACE is O(|E|).1 (In fact, if the length of the resulting P is L then the time

complexity is O(l); this follows from the fact that each edge that joins P can

“cause a waste” of computing time only twice: once when it joins P and, at

most, once again by its appearance on the incidence list of the adjacent vertex.)

If one uses the adjacency matrix representation, in the worst case, the tracing

algorithm takes time (and space) complexityΩ(|V |2).2 And if |E|<< |V |2, as is

the case for sparse graphs, the complexity is reduced by using the incidence-list

representation. Since in most applications, the graphs are sparse, we prefer to

use the incidence-list representation.

Note that in our discussions of complexity, we assume that the word length of

our computer is sufficient to store the names of our atomic components: vertices

and edges. If one does not make this assumption, then one may have to allow

Ω(log(|E|+ |V |)) bits to represent the atomic components, and to multiply the

complexities by this factor.

1 f(x) is O(g(x)) if there are two constants k1 and k2, such that for every x, f(x)�k1·

g(x)+k2.
2 f(x) is Ω(g(x)) if there are two constants k3 and k4, such that for every x, f(x)�k3 ·

g(x)+k4.
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6 1 Paths in Graphs

1.3 Euler Graphs

An Euler path of a finite undirected graph G(V ,E) is a path such that every

edge of G appears on it once. Therefore, the length of an Euler path is |E|. If G

has an Euler path, then it is called an Euler graph.

Theorem 1.1 A finite (undirected) connected graph is an Euler graph if and

only if exactly two vertices are of odd degree or all vertices are of even degree.

In the latter case, every Euler path of the graph is a circuit, and in the former

case, none is.

As an immediate conclusion of Theorem 1.1 we observe that none of the

graphs in Figure 1.2 is an Euler graph because both have four vertices of odd

degree. The graph shown in Figure 1.2(a) is the famous Königsberg bridge

problem solved byEuler in 1736. The graph shown inFigure 1.2(b) is a common

misleading puzzle of the type “draw without lifting your pen from the paper.”

Proof: It is clear that if a graph has an Euler path that is not a circuit, then

the start-vertex and the end-vertex of the path are of odd degree, while all the

other vertices are of even degree. Also, if a graph has an Euler circuit, then all

vertices are of even degree.

Assume now that G is a finite graph with exactly two vertices of odd degree,

a and b. We now describe an algorithm (A), which will find an Euler path from

a to b.

First, trace a maximal path P, as in the previous section, starting at vertex a.

Since G is finite, the algorithm halts, producing a path. But as soon as the path

emanates from a, one of the edges incident to a is used, and a’s residual degree

becomes even. Thus, every time a is reentered, there is an unused edge to leave

(a) (b)

Figure 1.2: Non-Eulerian graphs.
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1.3 Euler Graphs 7

a by. This proves that P cannot end in a. Similarly, if vertex v∈V \ {a,b}, then

P cannot end in v. It follows that P ends in b.

If P contains all the edges of G, we are done. If not, we make the following

observations:

• The residual degree of every vertex is even.

• There is an unused edge incident on some vertex v that is on P. To see that

this must be so, let u
e

w be an unused edge. If either u or w is on P, we

are done. If not, since G is connected, there is a path Q from a to u. There

must be unused edges on Q. Going from a on Q, the first unused edge we

encounter fits the bill.

Now, trace a maximal path P ′ in the residual graph, which consists of the

set V of vertices and all edges of E that are not in P. Start P ′ at v. Since all

vertices of the residual graph are of even degree, P ′ ends in v (and is therefore

a circuit). Next, combine P and P ′ to form one path from a to b as follows:

Follow P until it enters v. Now, incorporate P ′, and then follow the remainder

of P.

Repeat, incorporating additional circuits into the present path as long as there

are unused edges. Since the graph is finite, this process will terminate, yielding

an Euler path.

If all vertices of the graph are of even degree, the first traced path can start at

any vertex, and will be a circuit. The remainder of the algorithm is similar to

to this process. �

In the case of digraphs, a directed Euler path is a directed path in which every

edge appears once. A directed Euler circuit is a directed Euler path for which

the start and end vertices are identical. In addition, digraph is called Euler if it

has a directed Euler path (or circuit).

The underlying (undirected) graph of a digraph is the graph resulting from

the digraph if the direction of the edges is ignored. Thus, the underlying graph

of the digraph in Figure 1.3(a) is shown in Figure 1.3(b).

(b)(a)

Figure 1.3: A digraph and its underlying graph.

www.cambridge.org/9780521517188
www.cambridge.org


Cambridge University Press
978-0-521-51718-8 — Graph Algorithms
Shimon Even , Edited by Guy Even
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

8 1 Paths in Graphs

Theorem 1.2 A finite digraph is an Euler digraph if and only if its underlying

graph is connected and one of the following two conditions holds:

(i) There is one vertexa such thatdout(a)=din(a)+1, and another vertexb

such that dout(b)+1= din(b), while for every other vertex v, dout(v) =

din(v).

(ii) For every vertex v, dout(v) = din(v).

In the former case, every directed Euler path starts at a and ends in b. In the

latter, every directed Euler path is a directed Euler circuit.

The proof of Theorem1.2 is along the same lines as the proof of Theorem 1.1,

and is therefore not repeated here.

Let us make now a few comments about the complexity of the algorithm A

for finding an Euler path, as described in the proof of Theorem1.1. Our purpose

is to show that the time complexity of the algorithm is O(|E|).

Assume G(V ,E) is presented in the incidence list’s data structure. The main

path P and the detour P ′ will be represented by linked lists, where each item

on the list represents an edge.

In the vertex table, we add for each vertex v the following two items:

(i) A flag that indicates whether v is already on the main path P or the detour

P ′. Initially, this flag is “unvisited.”

(ii) For every visited vertex v, there is a pointer E(v) to the location on the path

of the edge through which v was first encountered. Initially, for every v,

E(v) =NIL.

We shall also use a list L of visited vertices. Each vertex enters L once, when

its flag is changed from “unvisited” to “visited.”

A starts by running TRACE(a,P), updating the vertices’ flags, and E(v) for

each newly visited vertex v. Next, the following loop is applied:

If L is empty, A halts. If not, take a vertex v from L, and remove v from L.

Use TRACE(v,P ′) to produce P ′. Look up edge E(v), recording the location

of the edge e it is linked to. Change this link to point to the first edge on P ′.

Now, let the last edge of P ′ point to e.

Note that when TRACE(v,P ′) terminates, v has no unused incident edges.

This explains why we can remove v from L.

Now that P ′ has been incorporated into P, the loop is repeated.

It is not hard to see that both the time and space complexities ofA areO(|E|).
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1.4 De Bruijn Sequences

Let Σ = {0,1, ...,σ− 1} be an alphabet of σ letters. Clearly, there are L = σn

different words of lengthn overΣ. A de Bruijn sequence is a (circular) sequence

a0a1 · · ·aL−1 over Σ such that for every word w of lengthn over Σ there exists

a (unique) 0 � j < L such that

ajaj+1 · · ·aj+n−1 =w,

where the computation of the indexes is modulo L.

The most important case is that of σ= 2. Binary de Bruijn sequences are of

great importance in coding theory and can be generated by shift registers. (See

Golomb, 1967, on the subject.) In this section we discuss the existence of de

Bruijn sequences for every σ and every n.

For that purpose let us define the de Bruijn digraph Gσ,n(V ,E) as follows:

(i) V = Σn−1; i.e., the set of all σn−1 words of length n− 1 over Σ.

(ii) E= Σn.

(iii) The directed edge b1b2 · · ·bn starts at vertex b1b2 · · ·bn−1 and ends in

vertex b2b3 · · ·bn.

DigraphsG2,3 and G2,4 are shown in Figure 1.4.G3,2 is shown in Figure 1.5.

Observe that if w1,w2 ∈ Σn, then w2 can follow w1 in a de Bruijn sequence

only if in Gσ,n the edge w2 starts at the vertex in which w1 ends. It follows

that there is a de Bruijn sequence for σ and n if and only if there is a directed

Euler circuit in Gσ,n.

For example, consider the directed Euler circuit ofG2,3, which consists of the

following sequence of directed edges:

000, 001, 011, 111, 110, 101, 010, 100.

The corresponding de Bruijn sequence, 00011101, follows by reading the first

letter of each word (edge) in the circuit.

Theorem 1.3 For every σ and n, Gσ,n has a directed Euler circuit.

Proof: To use Theorem 1.2 we have to show that the underlying undirected

graph of Gσ,n is connected and that for every vertex v, dout(v) = din(v).

Let us show that Gσ,n is strongly connected. This implies that its underlying

undirected graph is connected.
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Figure 1.4: Examples of de Bruijn digraphs for σ= 2.
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Figure 1.5: G3,2

Let b1b2 · · ·bn−1 and c1c2 · · ·cn−1 be any two vertices. The directed path

b1b2 · · ·bn−1c1, b2b3 · · ·bn−1c1c2, . . . ,bn−1c1 · · ·cn−1

is of length n − 1, it starts at vertex b1b2 · · ·bn−1 and ends in vertex

c1c2 · · ·cn−1, showing that Gσ,n is strongly connected. (Observe that this

directed path is not necessarily simple; it may use vertices and edges more

than once.)

Now, observe that for each vertex v=b1b2 · · ·bn−1, every outgoing edge is of

the formb1b2 · · ·bn−1c, where c can be any of theσ letters. Thus,dout(v)=σ.
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