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“In this comprehensive text, physicists and electrical engineers will find a thorough treatment
of semiclassical carrier transport in the context of nanoscale MOSFETs. With only a very basic
background in mathematics, physics, and electronic devices, the authors lead readers to a state-of-
the-art understanding of the advanced transport physics and simulation methods used to describe
modern transistors.”

Mark Lundstrom, Purdue University

“This is the most pedagogical and comprehensive book in the field of CMOS device physics I
have ever seen.”

Thomas Skotnicki, STMicroelectronics

“This is a modern and rigorous treatment of transport in advanced CMOS devices. The detailed
and complete description of the models and the simulation techniques makes the book fully self
sufficient.”

Asen Asenov, University of Glasgow
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Preface

The traditional geometrical scaling of the CMOS technologies has recently evolved in
a generalized scaling scenario where material innovations for different intrinsic regions
of MOS transistors as well as new device architectures are considered as the main routes
toward further performance improvements. In this regard, high-κ dielectrics are used to
reduce the gate leakage with respect to the SiO2 for a given drive capacitance, while
the on-current of the MOS transistors is improved by using strained silicon and pos-
sibly with the introduction of alternative channel materials. Moreover, the ultra-thin
body Silicon-On-Insulator (SOI) device architecture shows an excellent scalability even
with a very lightly doped silicon film, while non-planar FinFETs are also of particu-
lar interest, because they are a viable way to obtain double-gate SOI MOSFETs and
to realize in the same fabrication process n-MOS and p-MOS devices with different
crystal orientations.

Given the large number of technology options, physically based device simulations
will play an important role in indicating the most promising strategies for forthcoming
CMOS technologies. In particular, most of the device architecture and material options
discussed above are expected to affect the performance of the transistors through the
band structure and the scattering rates of the carriers in the device channel. Hence
microscopic modeling is necessary in order to gain a physical insight and develop a
quantitative description of the carrier transport in advanced CMOS technologies.

In this context, our book illustrates semi-classical transport modeling for both n-MOS
and p-MOS transistors, extending from the theoretical foundations to the challenges
and opportunities related to the most recent developments in nanometric CMOS tech-
nologies. Moreover, we describe relevant implementations of the semi-classical models
which rely on the momentum relaxation time approximation and on the Monte Carlo
approach for solution of the transport equations. The book aims at giving a description
of the models that, without sacrificing the rigor of the treatment, can be accessible to
both physicists and electronic engineers working in the electron device community. In
this spirit, the selection of topics is driven by the innovations recently introduced in the
semiconductor industry and by the trends in CMOS technology forecast by the Interna-
tional Roadmap for Semiconductors. Furthermore, since the CMOS technologies make
inherently equal use of n-type and p-type MOSFETs, and because the physically based
transport modeling is far more complicated for p-MOS than for n-MOS transistors, we
describe the models for the two devices separately and in the same detail, thus avoiding
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xii Preface

leaving the reader with the misleading impression that modeling of p-MOS devices is a
trivial extension of the n-MOS case.

With respect to implementations, we have highlighted the multi-subband Monte Carlo
approach because of some distinct features compared to other methods. These are its
generality (with a suitable choice of boundary conditions all transport regimes can be
explored, including the uniform and the non-uniform, the low field and the high field
regimes), accuracy (the Boltzmann transport equation is solved without a-priori assump-
tions about the carrier distribution functions), modularity (new scattering mechanisms
can be added without changing the core of the Monte Carlo solver) and completeness
(all the scattering mechanisms claimed to be relevant for nanoscale MOSFETs can be
accounted for).

As for the modeling methodologies alternative to the semi-classical approach illus-
trated in this book, quantum transport and its application to nanoscale MOSFETs has
recently made important progress, especially thanks to the non-equilibrium Green’s
function formalism. However, we believe that semi-classical transport will remain for a
long time the reference framework to understand the transport and support the design
and innovation of MOS transistors, because it is an adequate approach for both uniform
transport in long devices and strongly non-local, quasi-ballistic transport in nanoscale
MOSFETs. These characteristics fit well with the path to innovation followed in the
CMOS technologies, which typically starts from observation of possible improvements
in low field mobility and then tries to translate them into enhancements of the on-current
for nanoscale transistors.

At the time of writing, several alternative devices are being investigated as comple-
ments to the traditional MOSFETs, such as nanowires, carbon nano-tubes, graphene
nano-ribbon transistors, and tunnel-FETs, to name a few. Nevertheless, we believe that
devoting a book to nanoscale MOS transistors is a well defendable choice, because
on the one hand in the foreseeable future none of the above devices is expected
to replace MOSFETs for mainstream applications, and, furthermore, we know from
experience that the semi-classical transport methodologies described in this book can
be extended quite naturally also to devices with a different carrier gas dimensionality or
with different channel materials.

Due to the volume of literature related to semi-classical transport in MOSFETs, the
references included in the book could not be exhaustive. Rather, for each topic we have
tried to include a selection of the most relevant journal papers, books and also papers
presented at the leading conferences, which are frequently the most dynamic vehicles
for introduction of the latest developments into the electron device community.

We wrote this book to serve as a reference for graduate student courses devoted to the
theoretical foundations of, and recent developments in, carrier transport in nanoscale
CMOS technologies, and also as a reference book for researchers and practitioners
working in development and optimization of advanced MOS devices.

The prerequisite knowledge of physics for this book is limited to the basic concepts of
classical electrostatics and electrodynamics, to the basic notions and methods of quan-
tum mechanics and, in particular, to a familiarity with the Schrödinger equation and
with the meaning of the corresponding eigenvalues and wave-functions. A previous
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Preface xiii

basic knowledge of the band structure in crystals would be useful for the reader, how-
ever, the second chapter aims at making the book self-contained also in this respect. The
mathematical prerequisite knowledge is instead related to matrix algebra and to differ-
ential equations and differential eigenvalue problems. The book also assumes that the
reader has a basic acquaintance with the working principle of semiconductor devices
and, in particular, of MOS transistors.

The book was written to be as much as possible self-contained, so that most of the
derivations are included in detail, also by resorting to appendixes in the cases where we
thought that they resulted in too long a digression from the main flow of the discussion.
The availability of the derivations allows the reader to trace back the origin and under-
stand the validity limits of some results which may be very widely quoted and used in
the literature but not as often fully justified and explained.

Essentially all the models described in the book have been implemented by the au-
thors in benchmark codes or in complete simulators, so that it has been possible to
include many simulation results in order either to clarify some theoretical aspects or to
exemplify the insight provided by the models in practically relevant case studies.

David Esseni
Pierpaolo Palestri
Luca Selmi
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Terminology

Abbreviations and acronyms

BTE Boltzmann transport equation
DG Double gate
DIBL Drain induced barrier lowering
DoS Density of states
EMA Effective mass approximation
EOT Equivalent oxide thickness
EPM Empirical pseudo-potential method
ITRS International technology roadmap for semiconductors
MC Monte Carlo
MOS Metal-oxide-semiconductor
MOSFET MOS field effect transistor
CMOS Complementary metal-oxide-semiconductor
MSMC Multi-subband Monte Carlo
MRT Momentum relaxation time
SG Single gate
SOI Silicon on insulator
SS Subthreshold swing
TCAD Technology computer-aided design
VLSI Very large scale integration
VS Virtual source

Notation

x Scalar
x† Complex conjugate of the scalar x
x + (c.c) A scalar plus the complex conjugate, namely (x + x†)
x Vector, matrix or multi-dimensional tensor
xi j Element of the matrix x
xT Transpose of the vector or matrix x
x† Transpose conjugate of the vector or matrix x
x·y Scalar product between vectors x and y
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xvi Terminology

êx , x̂, êy , ŷ, êz , ẑ Unit vectors along the direction x , y and z
Ĥ Operator: typically consisting of a differential and an algebraic part
Hv(x) Heaviside function: 0 for negative x values and 1 otherwise
�{ f (x)} = F(q) Fourier transform of the function f (x)
( f ∗g)(x) Convolution of the functions f (x) and g(x)
∇ or ∇R Gradient with respect to real space three-dimensional coordinates R
∇ or ∇r Gradient with respect to real space two-dimensional coordinates r
∇K or ∇k Gradient with respect to wave-vectors K or k
[hkl] Miller indices that specify a crystal direction
〈hkl〉 Miller indices that specify equivalent crystal directions
(hkl) Miller indices that specify the crystal plane normal to [hkl]
{hkl} Miller indices that specify the equivalent crystal planes normal to

〈hkl〉

Symbols:

a0 Direct lattice constant of a crystal m
EF Fermi level J
g(E) Density of the states for a d dimensional carrier gas m−d J−1

nsp Spin degeneracy factor: can be either 1 or 2 unitless
F Electric field V m−1

Fx , Fy , Fz Electric field components in the x , y and z direction V m−1

Fef f Effective electrical field in an inversion layer V m−1

F Driving force for carrier motion Newton
Vg , vg Group velocity for a 3D or a 2D carrier gas m s−1

mx , my , mz Effective electron masses in the x , y and z direction kg
� Normalization volume m3

A Normalization area m2

φ Electrostatic potential V
U Potential energy J
T Temperature K
V Voltage at device terminals V
VGS Intrinsic terminal voltage difference from gate to source V
VDS Intrinsic terminal voltage difference from drain to source V
LG Gate length m
IO N Drain current per unit width at |VGS| = |VDS| = VDD A/m
IO F F Drain current per unit width at VGS = 0, |VDS| = VDD A/m
tox Physical oxide thickness m
Ninv Electron inversion layer density m−2

Pinv Hole inversion layer density m−2

N+ Inversion density of carriers moving from source to drain m−2

v+ Average velocity of carriers moving from source to drain m/s
N− Inversion density of carriers moving from drain to source m−2
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Terminology xvii

v− Average velocity of carriers moving from drain to source m/s
vsat Saturation velocity m/s
r Back-scattering coefficient unitless

Physical constants

h Planck’s constant 6.626075×10−34 Js
h̄ Reduced Planck’s constant h/(2π)

K B Boltzmann’s constant 1.380662×10−23 JK−1

e Positive electron charge 1.602189×10−19 C
m0 Electron rest mass 9.109390×10−31 kg
ε0 Dielectric constant of vacuum 8.854188×10−12 CV−1m−1
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