Nanoscale MOS Transistors

Written from an engineering standpoint, this book provides the theoretical background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOS nanoscale transistors. A wealth of applications, illustrations, and examples connect the methods described to all the latest issues in nanoscale MOSFET design. Key areas covered include:

- Transport in arbitrary crystal orientations and strain conditions, and new channel and gate stack materials;
- All the relevant transport regimes, ranging from low field mobility to quasi-ballistic transport, described using a single modeling framework;
- Predictive capabilities of device models, discussed with systematic comparisons to experimental results.

David Esseni is an Associate Professor of Electronics at the University of Udine, Italy.

Pierpaolo Palestri is an Associate Professor of Electronics at the University of Udine, Italy.

Luca Selmi is a Professor of Electronics at the University of Udine, Italy.

Cover illustration: the images represent the k-space carrier distributions at the end of the channel of nanoscale n- and p-MOSFETs biased in the saturation region of operation.

"In this comprehensive text, physicists and electrical engineers will find a thorough treatment of semiclassical carrier transport in the context of nanoscale MOSFETs. With only a very basic background in mathematics, physics, and electronic devices, the authors lead readers to a state-of-the-art understanding of the advanced transport physics and simulation methods used to describe modern transistors."

Mark Lundstrom, Purdue University

"This is the most pedagogical and comprehensive book in the field of CMOS device physics I have ever seen."

Thomas Skotnicki, STMicroelectronics

"This is a modern and rigorous treatment of transport in advanced CMOS devices. The detailed and complete description of the models and the simulation techniques makes the book fully self sufficient."

Asen Asenov, University of Glasgow

Nanoscale MOS Transistors

Semi-Classical Transport and Applications

DAVID ESSENI, PIERPAOLO PALESTRI, and LUCA SELMI University of Udine, Italy

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521516846

© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-51684-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

1

2

Cambridge University Press 978-0-521-51684-6 - Nanoscale MOS Transistors: Semi-Classical Transport and Applications David Esseni, Pierpaolo Palestri and Luca Selmi Frontmatter More information

Contents

Pref			<i>page</i> xi
Ackı	10wledg	gements	xiv
Tern	ninology	У	XV
Intro	duction	I	1
1.1	The hi	istorical CMOS scaling scenario	1
1.2	The ge	eneralized CMOS scaling scenario	5
1.3	Suppo	ort of modeling to nano-scale MOSFET design	7
1.4	An ov	erview of subsequent chapters	9
Bulk	semico	onductors and the semi-classical model	19
2.1	Crysta	alline materials	19
	2.1.1	Bravaix lattice	19
	2.1.2	Reciprocal lattice	21
	2.1.3	Bloch functions	24
	2.1.4	Density of states	29
2.2	Nume	rical methods for band structure calculations	30
	2.2.1	The pseudo-potential method	30
	2.2.2	The $\mathbf{k} \cdot \mathbf{p}$ method	34
2.3	Analy	tical band structure models	37
		Conduction band	37
	2.3.2	Valence band	39
2.4	Equivalent Hamiltonian and Effective Mass Approximation		41
	2.4.1		41
	2.4.2	The Effective Mass Approximation	43
2.5		emi-classical model	45
	2.5.1	Wave-packets and group velocity	45
	2.5.2	5 5 81	50
	2.5.3		54
	2.5.4	e	55
	2.5.5	Semi-classical electron transport	58
2.6	Summ	nary	60

vi	Cont	tents	
3	Qua	ntum confined inversion layers	63
	3.1	Electrons in a square well	64
	3.2	-	65
		3.2.1 Equivalent Hamiltonian for electron inversion layers	66
		3.2.2 Parabolic effective mass approximation	67
		3.2.3 Implementation and computational complexity	69
		3.2.4 Non-parabolic effective mass approximation	70
	3.3	5	72
		3.3.1 $\mathbf{k} \cdot \mathbf{p}$ method in inversion layers	72
		3.3.2 Implementation and computational complexity	74
		3.3.3 A semi-analytical model for hole inversion layers	77
	3.4	25	81
		3.4.1 Implementation and computational complexity	84
	25	3.4.2 Calculation results for the LCBB method	85
	3.5		86 87
		3.5.1 Density of states	87 88
		3.5.2 Electron inversion layers in the effective mass approximation3.5.3 Hole inversion layers with an analytical energy model	88 91
		3.5.4 Sums and integrals for a numerical energy model	91 92
	3.6		94
	5.0	3.6.1 Electron inversion layers	95
		3.6.2 Hole inversion layers	97
		3.6.3 Average values for energy and wave-vector at the equilibrium	98
	3.7	Self-consistent calculation of the electrostatic potential	100
		3.7.1 Stability issues	101
		3.7.2 Electron inversion layers and boundary conditions	103
		3.7.3 Speed-up of the convergence	108
	3.8	Summary	108
4	Carr	ier scattering in silicon MOS transistors	112
	4.1	Theory of the scattering rate calculations	113
		4.1.1 The Fermi golden rule in inversion layers	113
		4.1.2 Intra-valley transitions in electron inversion layers	114
		4.1.3 Physical interpretation and validity limits of Fermi's rule	114
		4.1.4 Inter-valley transitions in electron inversion layers	115
		4.1.5 Hole matrix elements for a $\mathbf{k} \cdot \mathbf{p}$ Hamiltonian	123
		4.1.6 A more general formulation of the Fermi golden rule	124
		4.1.7 Total scattering rate	127
		4.1.8 Elastic and isotropic scattering rates	127
	4.2	Static screening produced by the free carriers	128
		4.2.1 Basic concepts of screening	129
		4.2.2 Static dielectric function for a 2D carrier gas	130
		4.2.3 The scalar dielectric function	135

	Cont	ents	vii
		4.2.4 Calculation of the polarization factor	139
	4.3	Scattering with Coulomb centers	143
	1.5	4.3.1 Potential produced by a point charge	143
		4.3.2 Scattering matrix elements	148
		4.3.3 Effect of the screening	151
		4.3.4 Small areas and correlation of the Coulomb centers position	153
	4.4	Surface roughness scattering	156
		4.4.1 Bulk <i>n</i> -MOSFETs	156
		4.4.2 SOI <i>n</i> -MOSFETs	162
		4.4.3 Effect of the screening in <i>n</i> -MOSFETs	165
		4.4.4 Surface roughness in <i>p</i> -MOSFETs	166
	4.5	5	169
		4.5.1 Classical model for the lattice vibrations	169
	16	4.5.2 Quantization of the lattice vibrations	173 176
	4.0	Phonon scattering 4.6.1 Deformation potentials and scattering potentials	176
		4.6.1 Deformation potentials and scattering potentials4.6.2 General formulation of the phonon matrix elements	170
		4.6.3 Electron intra-valley scattering by acoustic phonons	178
		4.6.4 Electron intra-valley scattering by acoustic phonons	187
		4.6.5 Electron inter-valley phonon scattering	189
		4.6.6 Hole phonon scattering	193
		4.6.7 Selection rules for phonon scattering	195
	4.7	Screening of a time-dependent perturbation potential	196
		4.7.1 Dynamic dielectric function for a 2D carrier gas	197
		4.7.2 Screening for phonon scattering	200
	4.8	Summary	201
5	The	Boltzmann transport equation	207
	5.1	The BTE for the free-carrier gas	207
		5.1.1 The BTE for electrons	208
		5.1.2 The BTE for holes	211
	5.2	The BTE in inversion layers	214
		5.2.1 Real and wave-vector space in a 2D carrier gas	214
		5.2.2 The BTE without collisions	215
		5.2.3 Driving force	216
		5.2.4 Scattering5.2.5 Macroscopic quantities	219 220
		5.2.5 Macroscopic quantities5.2.6 Detailed balance at equilibrium	220 220
	5.3	The BTE for one-dimensional systems	220
	5.4	Momentum relaxation time approximation	223
	5.7	5.4.1 Calculation of the momentum relaxation time	223
		5.4.2 Momentum relaxation time for an electron inversion layer	229
		5.4.3 Momentum relaxation time for a hole inversion layer	233

viii	Cont	ents	
			_
		5.4.4 Calculation of mobility	235
		5.4.5 Mobility for an electron inversion layer	236
		5.4.6 Mobility for a hole inversion layer	239
		5.4.7 Multiple scattering mechanisms and Matthiessen's rule	239
	5.5	Models based on the balance equations of the BTE	241
		5.5.1 Drift–Diffusion model	241
		5.5.2 Analytical models for the MOSFET drain current	244
	5.6	The ballistic transport regime	246
		5.6.1 Carrier distribution in a ballistic MOSFET	247
		5.6.2 Ballistic current in a MOSFET	250
		5.6.3 Compact formulas for the ballistic current	252
		5.6.4 Injection velocity and subband engineering	254
	5.7	The quasi-ballistic transport regime	256
		5.7.1 Compact formulas for the quasi-ballistic current	256
		5.7.2 Back-scattering coefficient	259
		5.7.3 Critical analysis of the quasi-ballistic model	261
	5.8	Summary	263
6	The	Monte Carlo method for the Boltzmann transport equation	268
	6.1	Basics of the MC method for a free-electron-gas	269
		6.1.1 Particle dynamics	270
		6.1.2 Carrier scattering and state after scattering	273
		6.1.3 Boundary conditions	279
		6.1.4 Ohmic contacts	282
		6.1.5 Gathering of the statistics	283
		6.1.6 Enhancement of the statistics	285
		6.1.7 Estimation of the current at the terminals	287
		6.1.8 Full band Monte Carlo	288
		6.1.9 Quantum corrections to free carrier gas MC models	290
	6.2	Coupling with the Poisson equation	291
		6.2.1 Poisson equation: linear and non-linear solution schemes	292
		6.2.2 Boundary conditions	293
		6.2.3 Charge and force assignment	293
		6.2.4 Self-consistency and Coulomb interactions	296
		6.2.5 Stability	296
	6.3	The multi-subband Monte Carlo method	301
		6.3.1 Flowchart of the self-consistent MSMC method	301
		6.3.2 Free-flight, state after scattering and boundary conditions	303
		6.3.3 Multi-subband Monte Carlo transport for electrons	304
		6.3.4 Multi-subband Monte Carlo transport for holes	304
	6.4	Summary	306
7	Simu	ulation of bulk and SOI silicon MOSFETs	314
	7.1	Low field transport	314

	Cont	ents	i
		7.1.1 Measurement and representation of mobility data	314
		7.1.2 Low field mobility in bulk devices	31
		7.1.3 Low field mobility in SOI devices	32
	7.2	Far from equilibrium transport	32
		7.2.1 High field transport in uniform samples	32
		7.2.2 High field transport in bulk and SOI devices	33
	7.3	Drive current	33
		7.3.1 Ballistic and quasi-ballistic transport	33
		7.3.2 Voltage dependence and gate length scaling	33
	7.4	Summary	34
8	MOS	transistors with arbitrary crystal orientation	34
	8.1	Electron inversion layers	34
		8.1.1 Definitions	34
		8.1.2 Subband energy and in-plane dispersion relationship	35
		8.1.3 Carrier dynamics	35
		8.1.4 Change of the coordinates system	35
		8.1.5 Scattering rates	35
	8.2	Hole inversion layers	35
	8.3	Simulation results	35
		8.3.1 Mobility in electron and hole inversion layers	36
		8.3.2 Drain current in <i>n</i> - and <i>p</i> -MOSFETs	36
	8.4	Summary	36
9	MOS	transistors with strained silicon channel	36
	9.1	Fabrication techniques for strain engineering	36
		9.1.1 Global strain techniques	36
		9.1.2 Local strain techniques	36
	9.2	Elastic deformation of a cubic crystal	36
		9.2.1 Stress: definitions and notation	36
		9.2.2 Strain: definitions and notation	37
		9.2.3 Strain and stress relation: the elastic constants	37
		9.2.4 Change of coordinate systems for strain and stress	37
		9.2.5 Biaxial strain	37
		9.2.6 Uniaxial strain	37
	9.3	Band structure in strained <i>n</i> -MOS transistors	38
		9.3.1 Strain effects in the bulk silicon conduction band	38
		9.3.2 Biaxial and uniaxial strain in <i>n</i> -MOS transistors	38
	9.4	Band structure in strained <i>p</i> -MOS transistors	39
		9.4.1 The $\mathbf{k} \cdot \mathbf{p}$ model for holes in the presence of strain	39
		9.4.2 Biaxial and uniaxial strain in <i>p</i> -MOS transistors	39
	9.5	Simulation results for low field mobility	39
	9.6	Simulation results for drain current in MOSFETs	39
	9.7	Summary	39

Х	Contents	
10	MOS transistors with alternative materials	406
	10.1 Alternative gate materials	406
	10.2 Remote phonon scattering due to high- κ dielectrics	407
	10.2.1 Field propagation in the stack	409
	10.2.2 Device structure with an infinite dielectric	411
	10.2.3 Device structure with ITL/high- κ /metal-gate stack	416
	10.2.4 Calculation of the scattering rates	420
	10.3 Scattering due to remote Coulomb centers	423
	10.3.1 Scattering matrix elements	423
	10.3.2 Effect of the screening	425
	10.4 Simulation results for MOSFETs with high- κ dielectrics	425
	10.5 Alternative channel materials	430
	10.5.1 Ballistic transport modeling of alternative channel devices	431
	10.5.2 Energy reference in alternative channel materials	434
	10.6 Germanium MOSFETs	435
	10.6.1 Conduction band and phonon parameters	435
	10.6.2 Electrons: velocity and low field mobility	437
	10.6.3 Holes: band structure and low field mobility	439
	10.7 Gallium arsenide MOSFETs	440
	10.7.1 Conduction band parameters	440
	10.7.2 Phonon scattering	441
	10.7.3 Simulation results	443
	10.8 Summary	444
	Appendices	451
A	Mathematical definitions and properties	451
	A.1 Fourier transform	451
	A.2 Fourier series	453
	A.3 Fermi integrals	453
В	Integrals and transformations over a finite area A	455
C	Calculation of the equi-energy lines with the $\mathbf{k} \cdot \mathbf{p}$ model	457
	C.1 Three dimensional hole gas	457
	C.2 Two dimensional hole gas	458
D	Matrix elements beyond the envelope function approximation	461
E	Charge density produced by a perturbation potential	464
	Index	468
	1.1.1.1.1.1	

Preface

The traditional geometrical scaling of the CMOS technologies has recently evolved in a generalized scaling scenario where material innovations for different intrinsic regions of MOS transistors as well as new device architectures are considered as the main routes toward further performance improvements. In this regard, high- κ dielectrics are used to reduce the gate leakage with respect to the SiO₂ for a given drive capacitance, while the on-current of the MOS transistors is improved by using strained silicon and possibly with the introduction of alternative channel materials. Moreover, the ultra-thin body Silicon-On-Insulator (SOI) device architecture shows an excellent scalability even with a very lightly doped silicon film, while non-planar FinFETs are also of particular interest, because they are a viable way to obtain double-gate SOI MOSFETs and to realize in the same fabrication process *n*-MOS and *p*-MOS devices with different crystal orientations.

Given the large number of technology options, physically based device simulations will play an important role in indicating the most promising strategies for forthcoming CMOS technologies. In particular, most of the device architecture and material options discussed above are expected to affect the performance of the transistors through the band structure and the scattering rates of the carriers in the device channel. Hence microscopic modeling is necessary in order to gain a physical insight and develop a quantitative description of the carrier transport in advanced CMOS technologies.

In this context, our book illustrates semi-classical transport modeling for both n-MOS and p-MOS transistors, extending from the theoretical foundations to the challenges and opportunities related to the most recent developments in nanometric CMOS technologies. Moreover, we describe relevant implementations of the semi-classical models which rely on the momentum relaxation time approximation and on the Monte Carlo approach for solution of the transport equations. The book aims at giving a description of the models that, without sacrificing the rigor of the treatment, can be accessible to both physicists and electronic engineers working in the electron device community. In this spirit, the selection of topics is driven by the innovations recently introduced in the semiconductor industry and by the trends in CMOS technology forecast by the International Roadmap for Semiconductors. Furthermore, since the CMOS technologies make inherently equal use of n-type and p-type MOSFETs, and because the physically based transport modeling is far more complicated for p-MOS than for n-MOS transistors, we describe the models for the two devices separately and in the same detail, thus avoiding

xii Preface

leaving the reader with the misleading impression that modeling of p-MOS devices is a trivial extension of the n-MOS case.

With respect to implementations, we have highlighted the multi-subband Monte Carlo approach because of some distinct features compared to other methods. These are its generality (with a suitable choice of boundary conditions all transport regimes can be explored, including the uniform and the non-uniform, the low field and the high field regimes), accuracy (the Boltzmann transport equation is solved without a-priori assumptions about the carrier distribution functions), modularity (new scattering mechanisms can be added without changing the core of the Monte Carlo solver) and completeness (all the scattering mechanisms claimed to be relevant for nanoscale MOSFETs can be accounted for).

As for the modeling methodologies alternative to the semi-classical approach illustrated in this book, quantum transport and its application to nanoscale MOSFETs has recently made important progress, especially thanks to the non-equilibrium Green's function formalism. However, we believe that semi-classical transport will remain for a long time the reference framework to understand the transport and support the design and innovation of MOS transistors, because it is an adequate approach for both uniform transport in long devices and strongly non-local, quasi-ballistic transport in nanoscale MOSFETs. These characteristics fit well with the path to innovation followed in the CMOS technologies, which typically starts from observation of possible improvements in low field mobility and then tries to translate them into enhancements of the on-current for nanoscale transistors.

At the time of writing, several alternative devices are being investigated as complements to the traditional MOSFETs, such as nanowires, carbon nano-tubes, graphene nano-ribbon transistors, and tunnel-FETs, to name a few. Nevertheless, we believe that devoting a book to nanoscale MOS transistors is a well defendable choice, because on the one hand in the foreseeable future none of the above devices is expected to replace MOSFETs for mainstream applications, and, furthermore, we know from experience that the semi-classical transport methodologies described in this book can be extended quite naturally also to devices with a different carrier gas dimensionality or with different channel materials.

Due to the volume of literature related to semi-classical transport in MOSFETs, the references included in the book could not be exhaustive. Rather, for each topic we have tried to include a selection of the most relevant journal papers, books and also papers presented at the leading conferences, which are frequently the most dynamic vehicles for introduction of the latest developments into the electron device community.

We wrote this book to serve as a reference for graduate student courses devoted to the theoretical foundations of, and recent developments in, carrier transport in nanoscale CMOS technologies, and also as a reference book for researchers and practitioners working in development and optimization of advanced MOS devices.

The prerequisite knowledge of physics for this book is limited to the basic concepts of classical electrostatics and electrodynamics, to the basic notions and methods of quantum mechanics and, in particular, to a familiarity with the Schrödinger equation and with the meaning of the corresponding eigenvalues and wave-functions. A previous

Preface

basic knowledge of the band structure in crystals would be useful for the reader, however, the second chapter aims at making the book self-contained also in this respect. The mathematical prerequisite knowledge is instead related to matrix algebra and to differential equations and differential eigenvalue problems. The book also assumes that the reader has a basic acquaintance with the working principle of semiconductor devices and, in particular, of MOS transistors.

The book was written to be as much as possible self-contained, so that most of the derivations are included in detail, also by resorting to appendixes in the cases where we thought that they resulted in too long a digression from the main flow of the discussion. The availability of the derivations allows the reader to trace back the origin and understand the validity limits of some results which may be very widely quoted and used in the literature but not as often fully justified and explained.

Essentially all the models described in the book have been implemented by the authors in benchmark codes or in complete simulators, so that it has been possible to include many simulation results in order either to clarify some theoretical aspects or to exemplify the insight provided by the models in practically relevant case studies.

David Esseni Pierpaolo Palestri Luca Selmi Xiii

Acknowledgements

Many people contributed to this book and to the work which is behind it. Among them, we would like to express our sincere gratitude to M.De Michielis, F.Conzatti, N.Serra, P.Toniutti, L.Lucci, Q.Raphay, and M.Iellina for their contributions to the development of the simulation tools used to obtain many of the results included in the book, for their help in producing some of the figures and also for their careful reading of the manuscript. M.Bresciani, A.Cristofoli, A.Paussa, M.Panozzo, and E.Beaudoin helped us with the bibliographic entries in order to make the style of the references uniform throughout the book and also with editing some of the figures.

We are also in debt to our colleagues F.Driussi, A.Gambi, and P.Gardonio for the critical reading of some sections of the book, that was really invaluable for correcting mistakes and improving the text clarity.

This work has benefited substantially from interactions with colleagues with whom we have had a fruitful and stimulating collaboration over the years; among them, we would like to thank E.Sangiorgi, A.Abramo, C.Fiegna, and R.Clerc.

Our special thanks go also to J.Lancashire and S.Matthews at Cambridge University Press for following the progress of our work in all its phases, and to S.Tahir for support with all the LaTeX related troubles that inevitably occurred during the writing.

The understanding of our families for our devoting to this project much of our supposedly free time during the last two years has been at least as necessary as all the previously mentioned contributions in making possible the completion of the writing. To our families we gratefully dedicate this book.

David Esseni Pierpaolo Palestri Luca Selmi

Terminology

Abbreviations and acronyms

BTE	Boltzmann transport equation
DG	Double gate
DIBL	Drain induced barrier lowering
DoS	Density of states
EMA	Effective mass approximation
EOT	Equivalent oxide thickness
EPM	Empirical pseudo-potential method
ITRS	International technology roadmap for semiconductors
MC	Monte Carlo
MOS	Metal-oxide-semiconductor
MOSFET	MOS field effect transistor
CMOS	Complementary metal-oxide-semiconductor
MSMC	Multi-subband Monte Carlo
MRT	Momentum relaxation time
SG	Single gate
SOI	Silicon on insulator
SS	Subthreshold swing
TCAD	Technology computer-aided design
VLSI	Very large scale integration
VS	Virtual source

Notation

Х	Scalar
\mathbf{x}^{\dagger}	Complex conjugate of the scalar <i>x</i>
x + (c.c)	A scalar plus the complex conjugate, namely $(x + x^{\dagger})$
X	Vector, matrix or multi-dimensional tensor
x _{ij}	Element of the matrix x
\mathbf{x}_{ij} \mathbf{x}^{T}	Transpose of the vector or matrix \mathbf{x}
\mathbf{x}^{\dagger}	Transpose conjugate of the vector or matrix \mathbf{x}
x·y	Scalar product between vectors \mathbf{x} and \mathbf{y}

xvi	Terminology
-----	-------------

$\hat{\mathbf{e}}_x, \hat{\mathbf{x}}, \hat{\mathbf{e}}_y, \hat{\mathbf{y}}, \hat{\mathbf{e}}_z, \hat{\mathbf{z}}$	Unit vectors along the direction x , y and z
Ĥ	Operator: typically consisting of a differential and an algebraic part
$H_v(x)$	Heaviside function: 0 for negative x values and 1 otherwise
$F\{f(\mathbf{x})\} = F(q)$	Fourier transform of the function $f(\mathbf{x})$
(f*g)(x)	Convolution of the functions $f(x)$ and $g(x)$
∇ or $\nabla_{\mathbf{R}}$	Gradient with respect to real space three-dimensional coordinates ${f R}$
∇ or $\nabla_{\mathbf{r}}$	Gradient with respect to real space two-dimensional coordinates ${f r}$
$\nabla_{\mathbf{K}}$ or $\nabla_{\mathbf{k}}$	Gradient with respect to wave-vectors K or k
[hkl]	Miller indices that specify a crystal direction
$\langle hkl \rangle$	Miller indices that specify equivalent crystal directions
(hkl)	Miller indices that specify the crystal plane normal to [hkl]
$\{hkl\}$	Miller indices that specify the equivalent crystal planes normal to
	$\langle hkl \rangle$

Symbols:

a_0	Direct lattice constant of a crystal	m
E_F	Fermi level	J
g(E)	Density of the states for a <i>d</i> dimensional carrier gas	$m^{-d} J^{-1}$
n_{sp}	Spin degeneracy factor: can be either 1 or 2	unitless
F	Electric field	${ m V}~{ m m}^{-1}$
F_x, F_y, F_z	Electric field components in the x , y and z direction	${ m V}~{ m m}^{-1}$
F_{eff}	Effective electrical field in an inversion layer	$V m^{-1}$
F	Driving force for carrier motion	Newton
$\mathbf{V}_{g}, \mathbf{v}_{g}$	Group velocity for a 3D or a 2D carrier gas	${\rm m~s^{-1}}$
m_x, m_y, m_z	Effective electron masses in the x , y and z direction	kg
Ω	Normalization volume	m ³
Α	Normalization area	m^2
ϕ	Electrostatic potential	V
U	Potential energy	J
Т	Temperature	Κ
V	Voltage at device terminals	V
V_{GS}	Intrinsic terminal voltage difference from gate to source	V
V_{DS}	Intrinsic terminal voltage difference from drain to source	V
L_G	Gate length	m
I_{ON}	Drain current per unit width at $ V_{GS} = V_{DS} = V_{DD}$	A/m
I_{OFF}	Drain current per unit width at $V_{GS} = 0$, $ V_{DS} = V_{DD}$	A/m
t_{ox}	Physical oxide thickness	m
Ninv	Electron inversion layer density	m^{-2}
P_{inv}	Hole inversion layer density	m^{-2}
N^+	Inversion density of carriers moving from source to drain	m^{-2}
v^+	Average velocity of carriers moving from source to drain	m/s
N^{-}	Inversion density of carriers moving from drain to source	m^{-2}

v^{-}	Average velocity of carriers moving from drain to source	m/s
v_{sat}	Saturation velocity	m/s
r	Back-scattering coefficient	unitless

Physical constants

h	Planck's constant	$6.626075 \times 10^{-34} \mathrm{Js}$
ħ	Reduced Planck's constant	$h/(2\pi)$
K_B	Boltzmann's constant	$1.380662 \times 10^{-23} \mathrm{JK}^{-1}$
е	Positive electron charge	$1.602189 \times 10^{-19} \mathrm{C}$
m_0	Electron rest mass	$9.109390 \times 10^{-31} \text{ kg}$
ε_0	Dielectric constant of vacuum	$8.854188 \times 10^{-12} \text{CV}^{-1} \text{m}^{-1}$