Physical-Layer Security

From Information Theory to Security Engineering

This complete guide to physical-layer security presents the theoretical foundations, practical implementation, challenges, and benefits of a groundbreaking new model for secure communication. Using a bottom-up approach from the link level all the way to end-toend architectures, it provides essential practical tools that enable graduate students, industry professionals, and researchers to build more secure systems by exploiting the noise inherent to communication channels.

The book begins with a self-contained explanation of the information-theoretic limits of secure communications at the physical layer. It then goes on to develop practical coding schemes, building on the theoretical insights and enabling readers to understand the challenges and opportunities related to the design of physical-layer security schemes. Finally, applications to multi-user communications and network coding are also included.

Matthieu Bloch is an Assistant Professor in the School of Electrical Engineering of the Georgia Institute of Technology. He received a Ph.D. in Engineering Science from the Université de Franche-Comté, Besançon, France, in 2006, and a Ph.D. in Electrical Engineering from the Georgia Institute of Technology in 2008. His research interests are in the areas of information theory, error-control coding, wireless communications, and quantum cryptography.

João Barros is an Associate Professor in the Department of Electrical and Computer Engineering of the Faculdade de Engenharia da Universidade do Porto, the Head of the Porto Delegation of the Instituto de Telecomunicações, Portugal, and a Visiting Professor at the Massachusetts Institute of Technology. He received his Ph.D. in Electrical Engineering and Information Technology from the Technische Universität München (TUM), Germany, in 2004 and has since published extensively in the general areas of information theory, communication networks, and security. He has taught short courses and tutorials at various institutions and received a Best Teaching Award from the Bavarian State Ministry of Sciences and the Arts, as well as the 2010 IEEE ComSoc Young Researcher Award for Europe, the Middle East, and Africa. Cambridge University Press 978-0-521-51650-1 - Physical-Layer Security: From Information Theory to Security Engineering Matthieu Bloch and João Barros Frontmatter More information

Physical-Layer Security

From Information Theory to Security Engineering

MATTHIEU BLOCH Georgia Institute of Technology

JOÃO BARROS University of Porto

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521516501

© Cambridge University Press 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-51650-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-51650-1 - Physical-Layer Security: From Information Theory to Security Engineering Matthieu Bloch and João Barros Frontmatter <u>More information</u>

To our families

Contents

	Pref	face	<i>page</i> xi
	Notation		xiii
	List	of abbreviations	XV
Part I P	relimin	aries	1
1	An i	nformation-theoretic approach to physical-layer security	3
	1.1	Shannon's perfect secrecy	4
	1.2	Secure communication over noisy channels	6
	1.3	Channel coding for secrecy	7
	1.4	Secret-key agreement from noisy observations	8
	1.5 Active attacks		9
	1.6	Physical-layer security and classical cryptography	10
	1.7	Outline of the rest of the book	11
2	Fund	damentals of information theory	13
	2.1	Mathematical tools of information theory	13
		2.1.1 Useful bounds	13
		2.1.2 Entropy and mutual information	14
		2.1.3 Strongly typical sequences	18
		2.1.4 Weakly typical sequences	21
		2.1.5 Markov chains and functional dependence graphs	22
	2.2	The point-to-point communication problem	23
		2.2.1 Point-to-point communication model	24
		2.2.2 The source coding theorem	26
		2.2.3 The channel coding theorem	29
	2.3 Network information theory		32
		2.3.1 Distributed source coding	33
		2.3.2 The multiple-access channel	37
		2.3.3 The broadcast channel	40
	2.4 Bibliographical notes		44

viii	Cont	ents	
Part II	Informa	tion-theoretic security	47
3	Secr	recy capacity	49
	3.1	Shannon's cipher system	49
	3.2	Secure communication over a noisy channel	53
	3.3	Perfect, weak, and strong secrecy	55
	3.4	Wyner's wiretap channel	58
		3.4.1 Achievability proof for the degraded wiretap channel	65
		3.4.2 Converse proof for the degraded wiretap channel	76
	3.5	Broadcast channel with confidential messages	78
		3.5.1 Channel comparison	83
		3.5.2 Achievability proof for the broadcast channel with confidential	
		messages	90
		3.5.3 Converse proof for the broadcast channel with confidential	
		messages	98
	3.6	Multiplexing and feedback	103
		3.6.1 Multiplexing secure and non-secure messages	103
		3.6.2 Feedback and secrecy	104
	3.7	Conclusions and lessons learned	108
	3.8	Bibliographical notes	110
4	Secr	ret-key capacity	112
	4.1	Source and channel models for secret-key agreement	113
	4.2	Secret-key capacity of the source model	118
		4.2.1 Secret-key distillation based on wiretap codes	120
		4.2.2 Secret-key distillation based on Slepian–Wolf codes	121
		4.2.3 Upper bound for secret-key capacity	127
		4.2.4 Alternative upper bounds for secret-key capacity	129
	4.3	Sequential key distillation for the source model	134
		4.3.1 Advantage distillation	136
		4.3.2 Information reconciliation	143
		4.3.3 Privacy amplification	148
	4.4	Secret-key capacity of the channel model	162
	4.5	Strong secrecy from weak secrecy	166
	4.6	Conclusions and lessons learned	169
	4.7	Appendix	170
	4.8	Bibliographical notes	174
5	Secu	urity limits of Gaussian and wireless channels	177
	5.1	Gaussian channels and sources	177
		5.1.1 Gaussian broadcast channel with confidential messages	177
		5.1.2 Multiple-input multiple-output Gaussian wiretap channel	185
		5.1.3 Gaussian source model	190

		Contents	ix
	5.2	Wireless channels	193
		5.2.1 Ergodic-fading channels	195
		5.2.2 Block-fading channels	203
		5.2.3 Quasi-static fading channels	206
	5.3	Conclusions and lessons learned	210
	5.4	Bibliographical notes	210
Part III	Coding	and system aspects	213
6	Cod	ing for secrecy	215
	6.1	Secrecy and capacity-achieving codes	216
	6.2	Low-density parity-check codes	217
		6.2.1 Binary linear block codes and LDPC codes	217
		6.2.2 Message-passing decoding algorithm	220
		6.2.3 Properties of LDPC codes under message-passing decoding	222
	6.3	i i i j i i i j i i i i i i i i i i i i	223
		6.3.1 Algebraic secrecy criterion	225
		6.3.2 Coset coding with dual of LDPC codes	228
	6.4	6.3.3 Degrading erasure channels Reconciliation of binary memoryless sources	229 231
	6.5		231
	0.5	6.5.1 Multilevel reconciliation	234
		6.5.2 Multilevel reconciliation of Gaussian sources	239
	6.6		242
	6.7	-	245
7	7 System aspects		247
	7.1	Basic security primitives	248
		7.1.1 Symmetric encryption	248
		7.1.2 Public-key cryptography	249
		7.1.3 Hash functions	250
		7.1.4 Authentication, integrity, and confidentiality	251
		7.1.5 Key-reuse and authentication	251
	7.2	5	253
	7.3		256
	7.4 7.5	Integrating physical-layer security into wireless systems Bibliographical notes	260 265
Part IV		applications of information-theoretic security	267
8		recy and jamming in multi-user channels	269
	8.1	Two-way Gaussian wiretap channel	270
	8.2 8.3	Cooperative jamming Coded cooperative jamming	275 283
	0.5		203

Х	Contents			
	8.4 Key-exchange	289		
	8.5 Bibliographical notes	291		
9	Network-coding security	293		
	9.1 Fundamentals of network coding	293		
	9.2 Network-coding basics	295		
	9.3 System aspects of network coding	297		
	9.4 Practical network-coding protocols	299		
	9.5 Security vulnerabilities	302		
	9.6 Securing network coding against passive attacks	303		
	9.7 Countering Byzantine attacks	306		
	9.8 Bibliographical notes	309		
	References	311		
	Author index	323		
	Subject index	326		

Preface

This book is the result of more than five years of intensive research in collaboration with a large number of people. Since the beginning, our goal has been to understand at a deeper level how information-theoretic security ideas can help build more secure networks and communication systems. Back in 2008, the actual plan was to finish the manuscript within one year, which for some reason seemed a fairly reasonable proposition at that time. Needless to say, we were thoroughly mistaken. The pace at which physical-layer security topics have found their way into the main journals and conferences in communications and information theory is simply staggering. In fact, there is now a vibrant scientific community uncovering the benefits of looking at the physical layer from a security point of view and producing new results every day. Writing a book on physical-layer security thus felt like shooting at not one but multiple moving targets.

To preserve our sanity we decided to go back to basics and focus on how to bridge the gap between theory and practice. It did not take long to realize that the book would have to appeal simultaneously to information theorists, cryptographers, and network-security specialists. More precisely, the material could and should provide a common ground for fruitful interactions between those who speak the language of security and those who for a very long time focused mostly on the challenges of communicating over noisy channels. Therefore, we opted for a mathematical treatment that addresses the fundamental aspects of information-theoretic security, while providing enough background on cryptographic protocols to allow an eclectic and synergistic approach to the design of security systems.

The book is intended for several different groups: (a) communication engineers and security specialists who wish to understand the fundamentals of physical-layer security and apply them in the development of real-life systems, (b) scientists who aim at creating new knowledge in information-theoretic security and applications, (c) graduate students who wish to be trained in the fundamental techniques, and (d) decision makers who seek to evaluate the potential benefits of physical-layer security. If this book leads to many exciting discussions at the white board among diverse groups of people, then our goal will have been achieved.

Finally, we would like to acknowledge all our colleagues, students, and friends who encouraged us and supported us during the course of this project. First and foremost, we are deeply grateful to Steve McLaughlin, who initiated the project and let us run with it. Special thanks are also due to Phil Meyer and Sarah Matthews from Cambridge University Press for their endless patience as we postponed the delivery of the manuscript countless times. We express our sincere gratitude to Demijan Klinc and Alexandre Cambridge University Press 978-0-521-51650-1 - Physical-Layer Security: From Information Theory to Security Engineering Matthieu Bloch and João Barros Frontmatter More information

xii Preface

Pierrot, who proofread the entire book in detail many times and relentlessly asked for clarification, simplification, and consistent notation. We would like to thank Glenn Bradford, Michael Dickens, Brian Dunn, Jing Huang, Utsaw Kumar, Ebrahim Molavian-Jazi, and Zhanwei Sun for attending EE 87023 at the University of Notre Dame when the book was still a set of immature lecture notes. The organization and presentation of the book have greatly benefited from their candid comments. Thanks are also due to Nick Laneman, who provided invaluable support. Willie Harrison, Xiang He, Mari Kobayashi, Ashish Khisti, Francesco Renna, Osvaldo Simeone, Andrew Thangaraj, and Aylin Yener offered very constructive comments. The book also benefited greatly from many discussions with Prakash Narayan, Imre Csiszár, Muriel Médard, Ralf Koetter, and Pedro Pinto, who generously shared their knowledge with us. Insights from research by Miguel Rodrigues, Luísa Lima, João Paulo Vilela, Paulo Oliveira, Gerhard Maierbacher, Tiago Vinhoza, and João Almeida at the University of Porto also helped shape the views expressed in this volume.

Matthieu Bloch, Georgia Institute of Technology João Barros, University of Porto

Notation

GF(q)	Galois field with q elements
\mathbb{R}	field of real numbers
\mathbb{C}	field of complex numbers
\mathbb{N}	set of natural numbers (\mathbb{N}^* excludes 0)
\mathcal{X}	alphabet or set
$ \mathcal{X} $	cardinality of \mathcal{X}
$\operatorname{cl}(\mathcal{X})$	closure of set \mathcal{X}
$\operatorname{co}(\mathcal{X})$	convex hull of set \mathcal{X}
1	indicator function
$\{x_i\}_n$	ensemble with <i>n</i> elements $\{x_1, \ldots, x_n\}$
x	generic element of alphabet \mathcal{X}
x	absolute value of x
$\lceil x \rceil$	unique integer <i>n</i> such that $x \leq n < x + 1$
$\lfloor x \rfloor$	unique integer <i>n</i> such that $x - 1 \le n \le x$
$\llbracket x, y \rrbracket$	sequence of integers between $\lfloor x \rfloor$ and $\lceil y \rceil$
x^+	positive part of x, that is $x^+ = \max(x, 0)$
sign(x)	$+1$ if $x \ge 0, -1$ otherwise
x^n	sequence x_1, \ldots, x_n
\bar{x}^n	sequence with n repetitions of the same element x
ϵ	usually, a "small" positive real number
$\delta(\epsilon)$	a function of ϵ such that $\lim_{\epsilon \to 0} \delta(\epsilon) = 0$
$\delta_{\epsilon}(n)$	a function of ϵ and <i>n</i> such that $\lim_{n\to\infty} \delta_{\epsilon}(n) = 0$
$\delta(n)$	a function of <i>n</i> such that $\lim_{n\to\infty} \delta(n) = 0$
X	column vector containing the <i>n</i> elements x_1, x_2, \ldots, x_n
XT	transpose of x
\mathbf{x}^{\dagger}	Hermitian transpose of x
Η	matrix
$(h_{ij})_{m,n}$	$m \times n$ matrix whose elements are h_{ij} , with $i \in [\![1, m]\!]$ and
	$j \in \llbracket 1, n \rrbracket$
	determinant of matrix H
tr(H)	trace of matrix H
rk(H)	rank of matrix H
Ker(H)	kernel of matrix H

xiv

Cambridge University Press 978-0-521-51650-1 - Physical-Layer Security: From Information Theory to Security Engineering Matthieu Bloch and João Barros Frontmatter More information

Notation	
Х	random variable implicitly defined on alphabet \mathcal{X}
p_X	probability distribution of random variable X
$X \sim p_X$	random variable X with distribution p_X
$\mathcal{N}(\mu,\sigma^2)$	Gaussian distribution with mean μ and variance σ^2
$\mathcal{B}(p)$	Bernoulli distribution with parameter p
$p_{X Y}$	conditional probability distribution of X given Y
$\mathcal{T}^n_\epsilon(X)$	strong typical set with respect to p_X
$\mathcal{T}^n_\epsilon(XY)$	strong joint-typical set with respect to p_{XY}
$\mathcal{T}_{\epsilon}^{n}(XY x^{n})$	conditional strong typical set with respect to p_{XY} and x^n
$\mathcal{A}^n_{\epsilon}(X)$	weak typical set with respect to p_X
$\mathcal{A}^n_{\epsilon}(XY)$	joint weak typical set with respect to p_{XY}
\mathbb{E}_{X}	expected value over random variable X
Var(X)	variance of random variable X
\mathbb{P}_X	probability of an event over X
$\mathbb{H}(X)$	Shannon entropy of discrete random variable X
$\mathbb{H}_{\mathbf{b}}$	binary entropy function
$\mathbb{H}_{c}(X)$	collision entropy of discrete random variable X
$\mathbb{H}_{\infty}(X)$	min-entropy of discrete random variable X
h(X)	differential entropy of continuous random variable X
$\mathbb{I}(X;Y)$	mutual information between random variables X and Y
$\mathbf{P}_{e}(\mathcal{C})$	probability of error of a code C
$\mathbf{E}(\mathcal{C})$	equivocation of a code C
$L(\mathcal{C})$	information leakage of a code C
$\mathbf{U}(\mathcal{S})$	uniformity of keys guaranteed by key-distillation strategy ${\cal S}$
$\underline{\lim}_{x \to c} f(x)$	limit inferior of $f(x)$ as x goes to c
$\overline{\lim}_{x\to c} f(x)$	limit superior of $f(x)$ as x goes to c
f(x) = O(g(x))	If g is non-zero for large enough values of x ,
	$f(x) = O(g(x))$ as $x \to a$ if and only if
	$\overline{\lim}_{x\to\infty} f(x)/g(x) <\infty.$

Abbreviations

AES	Advanced Encryption Standard
AWGN	additive white Gaussian noise
BC	broadcast channel
BCC	broadcast channel with confidential messages
BEC	binary erasure channel
BSC	binary symmetric channel
CA	certification authority
DES	Data Encryption Standard
DMC	discrete memoryless channel
DMS	discrete memoryless source
DSRC	Dedicated Short-Range Communication
DSS	direct sequence spreading
DWTC	degraded wiretap channel
EAP	Extensible Authentication Protocol
EPC	Electronic Product Code
ESP	Encapsulating Security Payload
FH	frequency hopping
GPRS	General Packet Radio Service
GSM	Global System for Mobile Communications
IETF	Internet Engineering Task Force
IP	Internet Protocol
LDPC	low-density parity-check
LLC	logical link control
LLR	log-likelihood ratio
LPI	low probability of intercept
LS	least square
LTE	Long Term Evolution
MAC	multiple-access channel
MIMO	multiple-input multiple-output
NFC	near-field communication
NIST	National Institute of Standards and Technology, USA
OSI	open system interconnection
PKI	public key infrastructure
RFID	radio-frequency identification

xvi List of abbreviations

RSA	Rivest-Shamir-Adleman
SIM	subscriber identity module
SSL	Secure Socket Layer
TCP	Transmission Control Protocol
TDD	time-division duplex
TLS	transport layer security
TWWTC	two-way wiretap channel
UMTS	Universal Mobile Telecommunication System
WTC	Wiretap channel
XOR	exclusive OR