In the last decade methods and techniques based on supersymmetry have provided deep insights in quantum chromodynamics and other non-supersymmetric gauge theories at strong coupling. This book summarizes major advances in critical solitons in supersymmetric theories, and their implications for understanding basic dynamical regularities of non-supersymmetric theories.

After an extended introduction on the theory of critical solitons, including a historical introduction, the authors focus on three topics: non-Abelian strings and confined monopoles; reducing the level of supersymmetry; and domain walls as D brane prototypes. They also provide a thorough review of issues at the cutting edge, such as non-Abelian flux tubes. The book presents an extensive summary of the current literature so that researchers in this field can understand the background and related issues.

Mikhail Shifman is the Ida Cohen Fine Professor of Physics at the University of Minnesota, and is one of the world leading experts on quantum chromodynamics and non-perturbative supersymmetry. In 1999 he received the Sakurai Prize for Theoretical Particle Physics, and in 2006 he was awarded the Julius Edgar Lilienfeld Prize for outstanding contributions to physics. He is the author of several books, over 300 scientific publications, and a number of popular articles and articles on the history of high-energy physics.

Alexei Yung is a Senior Researcher in the Theoretical Department at the Petersburg Nuclear Physics Institute, Russia, and a Visiting Professor at the William I. Fine Theoretical Physics Institute. His research interests lie in non-perturbative dynamics of non-Abelian supersymmetric gauge theories and its interplay with string theory, and the problem of color confinement in non-Abelian gauge theories. Many of his recent advances in these areas are included in this book.
L. O’Raifeartaigh Group Structure of Gauge Theories
T. Ortín Gravity and Strings
A. M. Ozorio de Almeida Hamiltonian Systems: Chaos and Quantization
R. Penrose and W. Rindler Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields
R. Penrose and W. Rindler Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry
S. Pokorski Gauge Field Theories, 2nd edition
J. Polchinski String Theory Volume 1: An Introduction to the Bosonic String
J. Polchinski String Theory Volume 2: Superstring Theory and Beyond
V. N. Popov Functional Integrals and Collective Excitations
R. J. Rivers Path Integral Methods in Quantum Field Theory
R. G. Roberts The Structure of the Proton: Deep Inelastic Scattering
C. Rovelli Quantum Gravity
W. C. Saslaw Gravitational Physics of Stellar and Galactic Systems
M. Shifman and A. Yung Supersymmetric Solitons
H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt Exact Solutions of Einstein’s Field Equations, 2nd edition
J. Stewart Advanced General Relativity
T. Thiemann Modern Canonical Quantum General Relativity
D. J. Toms The Schwinger Action Principle and Effective Action
A. Vilenkin and E. P. S. Shellard Cosmic Strings and Other Topological Defects
R. S. Ward and R. O. Wells, Jr Twistor Geometry and Field Theory
J. R. Wilson and G. J. Mathews Relativistic Numerical Hydrodynamics

† Issued as a paperback
Supersymmetric Solitons

M. SHIFMAN
William I. Fine Theoretical Physics Institute
University of Minnesota

A. YUNG
William I. Fine Theoretical Physics Institute
University of Minnesota
Petersburg Nuclear Physics Institute
Institute of Theoretical and Experimental Physics
Contents

Acknowledgments
List of abbreviations

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>Page</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>Page</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 Introduction

I SHORT EXCURSION

2 Central charges in superalgebras

2.1 History
2.2 Minimal supersymmetry
 2.2.1 $D = 2$
 2.2.2 $D = 3$
 2.2.3 $D = 4$
2.3 Extended SUSY
 2.3.1 $\mathcal{N} = 2$ in $D = 2$
 2.3.2 $\mathcal{N} = 2$ in $D = 3$
 2.3.3 On extended supersymmetry (eight supercharges) in $D = 4$

3 The main building blocks

3.1 Domain walls
 3.1.1 Preliminaries
 3.1.2 Domain wall in the minimal Wess–Zumino model
 3.1.3 D-branes in gauge field theory
 3.1.4 Domain wall junctions
 3.1.5 Webs of walls
3.2 Vortices in $D = 3$ and flux tubes in $D = 4$
 3.2.1 SQED in 3D

© Cambridge University Press
www.cambridge.org
3.2.2 Four-dimensional SQED and the ANO string
- Page 40

3.2.3 Flux tube junctions
- Page 41

3.3 Monopoles
- Page 43
 3.3.1 The Georgi–Glashow model: vacuum and elementary excitations
- Page 43
 3.3.2 Monopoles – topological argument
- Page 45
 3.3.3 Mass and magnetic charge
- Page 45
 3.3.4 Solution of the Bogomol’nyi equation for monopoles
- Page 47
 3.3.5 Collective coordinates (moduli)
- Page 49
 3.3.6 Singular gauge, or how to comb a hedgehog
- Page 54
 3.3.7 Monopoles in SU(N)
- Page 55
 3.3.8 The θ term induces a fractional electric charge for the monopole (the Witten effect)
- Page 59

3.4 Monopoles and fermions
- Page 60
 3.4.1 $\mathcal{N}=2$ super-Yang–Mills (without matter)
- Page 61
 3.4.2 Supercurrents and the monopole central charge
- Page 62
 3.4.3 Zero modes for adjoint fermions
- Page 65
 3.4.4 Zero modes for fermions in the fundamental representation
- Page 66
 3.4.5 The monopole supermultiplet: dimension of the BPS representations
- Page 67

3.5 More on kinks (in $\mathcal{N}=2$ CP(1) model)
- Page 67
 3.5.1 BPS solitons at the classical level
- Page 69
 3.5.2 Quantization of the bosonic moduli
- Page 71
 3.5.3 The kink mass and holomorphy
- Page 72
 3.5.4 Fermions in quasiclassical consideration
- Page 74
 3.5.5 Combining bosonic and fermionic moduli
- Page 76

II LONG JOURNEY

Introduction to Part II
- Page 81

4 Non-Abelian strings
- Page 85
 4.1 Basic model: $\mathcal{N}=2$ SQCD
- Page 85
 4.1.1 SU(N)×U(1), $\mathcal{N}=2$ QCD
- Page 88
 4.1.2 The vacuum structure and excitation spectrum
- Page 89
 4.2 Z_N Abelian strings
- Page 92
 4.3 Elementary non-Abelian strings
- Page 98
 4.4 The world-sheet effective theory
- Page 99
 4.4.1 Derivation of the CP($N−1$) model
- Page 100
 4.4.2 Fermion zero modes
- Page 104
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.3</td>
<td>Physics of the CP($N-1$) model with $\mathcal{N}=2$</td>
<td>108</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Unequal quark masses</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>Confined monopoles as kinks of the CP($N-1$) model</td>
<td>115</td>
</tr>
<tr>
<td>4.5.1</td>
<td>The first-order master equations</td>
<td>118</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The string junction solution in the quasiclassical regime</td>
<td>120</td>
</tr>
<tr>
<td>4.5.3</td>
<td>The strong coupling limit</td>
<td>123</td>
</tr>
<tr>
<td>4.6</td>
<td>Two-dimensional kink and four-dimensional Seiberg–Witten solution</td>
<td>126</td>
</tr>
<tr>
<td>4.7</td>
<td>More quark flavors</td>
<td>130</td>
</tr>
<tr>
<td>4.8</td>
<td>Non-Abelian k-strings</td>
<td>135</td>
</tr>
<tr>
<td>4.9</td>
<td>A physical picture of the monopole confinement</td>
<td>137</td>
</tr>
<tr>
<td>5</td>
<td>Less supersymmetry</td>
<td>142</td>
</tr>
<tr>
<td>5.1</td>
<td>Breaking $\mathcal{N}=2$ supersymmetry down to $\mathcal{N}=1$</td>
<td>144</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Deformed theory and string solutions</td>
<td>144</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Heterotic CP($N-1$) model</td>
<td>149</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Large-\mathcal{N} solution</td>
<td>153</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Limits of applicability</td>
<td>157</td>
</tr>
<tr>
<td>5.2</td>
<td>The M model</td>
<td>159</td>
</tr>
<tr>
<td>5.3</td>
<td>Confined non-Abelian monopoles</td>
<td>163</td>
</tr>
<tr>
<td>5.4</td>
<td>Index theorem</td>
<td>166</td>
</tr>
<tr>
<td>6</td>
<td>Non-BPS non-Abelian strings</td>
<td>171</td>
</tr>
<tr>
<td>6.1</td>
<td>Non-Abelian strings in non-supersymmetric theories</td>
<td>171</td>
</tr>
<tr>
<td>6.1.1</td>
<td>World-sheet theory</td>
<td>172</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Physics in the large-\mathcal{N} limit</td>
<td>174</td>
</tr>
<tr>
<td>6.2</td>
<td>Non-Abelian strings in $\mathcal{N}=1$ theory</td>
<td>182</td>
</tr>
<tr>
<td>7</td>
<td>Strings on the Higgs branches</td>
<td>188</td>
</tr>
<tr>
<td>7.1</td>
<td>Extreme type-I strings</td>
<td>189</td>
</tr>
<tr>
<td>7.2</td>
<td>Example: $\mathcal{N}=1$ SQED with the FI term</td>
<td>192</td>
</tr>
<tr>
<td>8</td>
<td>Domain walls as D-brane prototypes</td>
<td>196</td>
</tr>
<tr>
<td>8.1</td>
<td>$\mathcal{N}=2$ supersymmetric QED</td>
<td>197</td>
</tr>
<tr>
<td>8.2</td>
<td>Domain walls in $\mathcal{N}=2$ SQED</td>
<td>199</td>
</tr>
<tr>
<td>8.3</td>
<td>Effective field theory on the wall</td>
<td>202</td>
</tr>
<tr>
<td>8.4</td>
<td>Domain walls in the U(N) gauge theories</td>
<td>206</td>
</tr>
<tr>
<td>9</td>
<td>Wall-string junctions</td>
<td>209</td>
</tr>
<tr>
<td>9.1</td>
<td>Strings ending on the wall</td>
<td>209</td>
</tr>
</tbody>
</table>
Contents

9.2 Boojum energy .. 212
9.3 Finite-size rigid strings stretched between the walls.
 Quantizing string endpoints 214
9.4 Quantum boojums. Physics of the world volume theory 219

10 Conclusions .. 223

Appendix A Conventions and notation 228
Appendix B Many faces of two-dimensional supersymmetric
 CP($N - 1$) model .. 234
Appendix C Strings in $\mathcal{N} = 2$ SQED 243

References .. 248
Index .. 256
Author index .. 258
Acknowledgments

We are grateful to Adam Ritz, David Tong, and Arkady Vainshtein for useful discussions.

The work of M.S. was supported in part by DOE grant DE-FG02-94ER408. The work of A.Y. was supported by FTPI, University of Minnesota, by RFBR Grant No. 06-02-16364a and by Russian State Grant for Scientific School RSGSS-11242003.2.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdS</td>
<td>Anti de Sitter</td>
</tr>
<tr>
<td>ANO</td>
<td>Abrikosov–Nielsen–Olesen</td>
</tr>
<tr>
<td>BPS</td>
<td>Bogomol'nyi–Prasad–Sommerfield</td>
</tr>
<tr>
<td>CC</td>
<td>Central Charge</td>
</tr>
<tr>
<td>CMS</td>
<td>Curve(s) of the Marginal Stability</td>
</tr>
<tr>
<td>CFT</td>
<td>Conformal Field Theory</td>
</tr>
<tr>
<td>CFIV</td>
<td>Cecotti–Fendley–Intriligator–Vafa</td>
</tr>
<tr>
<td>FI</td>
<td>Fayet–Iliopoulos</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>NSVZ</td>
<td>Navikov–Shifman–Vainshtein–Zakharov</td>
</tr>
<tr>
<td>QCD</td>
<td>Quantum Chromodynamics</td>
</tr>
<tr>
<td>SUSY</td>
<td>Supersymmetry, Supersymmetric</td>
</tr>
<tr>
<td>SQCD</td>
<td>Supersymmetric Quantum Chromodynamics</td>
</tr>
<tr>
<td>SQED</td>
<td>Supersymmetric Quantum Electrodynamics</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VEV</td>
<td>Vacuum Expectation Value</td>
</tr>
</tbody>
</table>