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Introduction

It is well known that supersymmetric theories may have Bogomol’nyi–Prasad–
Sommerfield (BPS) sectors in which some data can be computed at strong coupling
even when the full theory is not solvable. Historically, this is how the first exact
results on particle spectra were obtained [1]. Seiberg–Witten’s breakthrough results
[2, 3] in the mid 1990s gave an additional motivation to the studies of the BPS
sectors.

BPS solitons can emerge in those supersymmetric theories in which superalge-
bras are centrally extended. In many instances the corresponding central charges
are seen at the classical level. In some interesting models central charges appear as
quantum anomalies.

First studies of BPS solitons (sometimes referred to as critical solitons) in
supersymmetric theories at weak coupling date back to the 1970s. De Vega and
Schaposnik were the first to point out [4] that a model in which classical equations
of motion can be reduced to first-order Bogomol’nyi–Prasad–Sommerfeld (BPS)
equations [5, 6] is, in fact, a bosonic reduction of a supersymmetric theory. Already
in 1977 critical soliton solutions were obtained in the superfield form in some two-
dimensional models [7]. In the same year miraculous cancellations occurring in
calculations of quantum corrections to soliton masses were noted in [8] (see also
[9]). It was observed that for BPS solitons the boson and fermion modes are degen-
erate and their number is balanced. It was believed (incorrectly, we hasten to add)
that the soliton masses receive no quantum corrections. The modern – correct –
version of this statement is as follows: if a soliton is BPS-saturated at the classical
level and belongs to a shortened supermultiplet, it stays BPS-saturated after quan-
tum corrections, and its mass exactly coincides with the central charge it saturates.
The latter may or may not be renormalized. Often – but not always – central charges
that do not vanish at the classical level and have quantum anomalies are renormal-
ized. Those that emerge as anomalies and have no classical part typically receive no
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2 Introduction

renormalizations. In many instances holomorphy protects central charges against
renormalizations.

Critical solitons play a special role in gauge field theories. Numerous paral-
lels between such solitonic objects and basic elements of string theory have been
revealed in recent years. At first, the relation between string theory and supersym-
metric gauge theories was mostly a “one-way street” – from strings to field theory.
Now it is becoming exceedingly more evident that field-theoretic methods and
results, in their turn, provide insights in string theory.

String theory, which emerged from dual hadronic models in the late 1960s and
70s, elevated to the “theory of everything” in the 1980s and 90s when it expe-
rienced an unprecedented expansion, has seemingly entered a “return-to-roots”
stage. The task of finding solutions to “down-to-earth” problems of QCD and other
gauge theories by using results and techniques of string/D-brane theory is currently
recognized by many as one of the most important and exciting goals of the commu-
nity. In this area the internal logic of development of string theory is fertilized by
insights and hints obtained from field theory. In fact, this is a very healthy process
of cross-fertilization.

If supersymmetric gauge theories are, in a sense, dual to string/D-brane theory –
as is generally believed to be the case – they must support domain walls (of the
D-brane type) [10], and we know, they do [11, 12]. A D-brane is defined as a
hypersurface on which a string may end. In field theory both the brane and the
string arise as BPS solitons, the brane as a domain wall and the string as a flux tube.
If their properties reflect those inherent to string theory, at least to an extent, the
flux tube must end on the wall. Moreover, the wall must house gauge fields living
on its world volume, under which the end of the string is charged.

The purpose of this review is to summarize developments in critical solitons in
two, three and four dimensions, with emphasis on four dimensions and on most
recent results. A large variety of BPS-saturated solitons exist in four-dimensional
field theories: domain walls, flux tubes (strings), monopoles and dyons, and various
junctions of the above objects. A list of recent discoveries includes localization of
gauge fields on domain walls, non-Abelian strings that can end on domain walls,
developed boojums, confined monopoles attached to strings, and other remarkable
findings. The BPS nature of these objects allows one to obtain a number of exact
results. In many instances nontrivial dynamics of the bulk theories we will consider
lead to effective low-energy theories in the world volumes of domain walls and
strings (they are related to zero modes) exhibiting novel dynamical features that
are interesting by themselves.

We do not try to review the vast literature accumulated since the mid 1990s in
its entirety. A comparison with a huge country the exploration of which is not yet
completed is in order here. Instead, we suggest what may be called “travel diaries”
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Introduction 3

of the participants of the exploratory expedition. Recent publications [13, 14, 15,
16, 17] facilitate our task since they present the current developments in this field
from a complementary point of view.

The “diaries” are organized in two parts. The first part (entitled “Short excur-
sion”) is a bird’s eye view of the territory. It gives a brief and largely nontechnical
introduction to basic ideas lying behind supersymmetric solitons and particular
applications. It is designed in such a way as to present a general perspective that
would be understandable to anyone with an elementary knowledge in classical and
quantum fields, and supersymmetry.

Here we present some historic remarks, catalog relevant centrally extended super-
algebras and review basic building blocks we consistently deal with – domain walls,
flux tubes, and monopoles – in their classic form. The word “classic” is used here
not in the meaning “before quantization” but, rather, in the meaning “recognized
and cherished in the community for years.”

The second part (entitled “Long journey”) is built on other principles. It is
intended for those who would like to delve in this subject thoroughly, with its
specific methods and technical devices. We put special emphasis on recent devel-
opments having direct relevance to QCD and gauge theories at large, such as
non-Abelian flux tubes (strings), non-Abelian monopoles confined on these strings,
gauge field localization on domain walls, etc. We start from presenting our bench-
mark model, which has extended N = 2 supersymmetry. Here we go well beyond
conceptual foundations, investing efforts in detailed discussions of particular prob-
lems and aspects of our choosing. Naturally, we choose those problems and aspects
which are instrumental in the novel phenomena mentioned above. In addition to
walls, strings and monopoles, we also dwell on the string-wall junctions which play
a special role in the context of dualization.

Our subsequent logic is from N = 2 to N = 1 and further on. Indeed, in certain
instances we are able to descend to non-supersymmetric gauge theories which are
very close relatives of QCD. In particular, we present a fully controllable weakly
coupled model of the Meissner effect which exhibits quite nontrivial (strongly
coupled) dynamics on the string world sheet. One can draw direct parallels between
this consideration and the issue of k-strings in QCD.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51638-9 - Supersymmetric Solitons
M. Shifman and A. Yung
Excerpt
More information

http://www.cambridge.org/9780521516389
http://www.cambridge.org
http://www.cambridge.org


Part I

Short excursion
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2

Central charges in superalgebras

In this Section we will briefly review general issues related to central charges (CC)
in superalgebras.

2.1 History

The first superalgebra in four-dimensional field theory was derived by Golfand and
Likhtman [18] in the form

{Q̄α̇Qβ} = 2Pµ

(
σµ

)
αβ

, {Q̄αQ̄β} = {QαQβ} = 0, (2.1.1)

i.e. with no central charges. Possible occurrence of CC (elements of superalgebra
commuting with all other operators) was first mentioned in an unpublished paper of
Lopuszanski and Sohnius [19] where the last two anticommutators were modified as

{QI
αQG

β } = ZIG
αβ . (2.1.2)

The superscripts I , G mark extended supersymmetry. A more complete description
of superalgebras with CC in quantum field theory was worked out in [20]. The
only central charges analyzed in this paper were Lorentz scalars (in four dimen-
sions), Zαβ ∼ εαβ . Thus, by construction, they could be relevant only to extended
supersymmetries.

A few years later, Witten and Olive [1] showed that in supersymmetric theories
with solitons, central extension of superalgebras is typical; topological quantum
numbers play the role of central charges.

It was generally understood that superalgebras with (Lorentz-scalar) central
charges can be obtained from superalgebras without central charges in higher-
dimensional space-time by interpreting some of the extra components of the
momentum as CC’s (see e.g. [21]). When one compactifies extra dimensions one
obtains an extended supersymmetry; the extra components of the momentum act
as scalar central charges.
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8 Central charges in superalgebras

Algebraic analysis extending that of [20] carried out in the early 1980s (see
e.g. [22]) indicated that the super-Poincaré algebra admits CC’s of a more general
form, but the dynamical role of additional tensorial charges was not recognized
until much later. Now it is common knowledge that central charges that originate
from operators other than the energy-momentum operator in higher dimensions can
play a crucial role. These tensorial central charges take non-vanishing values on
extended objects such as strings and membranes.

Central charges that are antisymmetric tensors in various dimensions were intro-
duced (in the supergravity context, in the presence of p-branes) in Ref. [23] (see
also [24, 25]). These CC’s are relevant to extended objects of the domain wall type
(membranes). Their occurrence in four-dimensional super-Yang–Mills theory (as a
quantum anomaly) was first observed in [11]. A general theory of central extensions
of superalgebras in three and four dimensions was discussed in Ref. [26]. It is worth
noting that those central charges that have the Lorentz structure of Lorentz vectors
were not considered in [26]. The gap was closed in [27].

2.2 Minimal supersymmetry

The minimal number of supercharges νQ in various dimensions is given in Table 2.1.
Two-dimensional theories with a single supercharge, although algebraically possi-
ble, are quite exotic. In “conventional” models in D = 2 with local interactions the
minimal number of supercharges is two.

The minimal number of supercharges in Table 2.1 is given for a real represen-
tation. Then, it is clear that, generally speaking, the maximal possible number of
CC’s is determined by the dimension of the symmetric matrix {QiQj } of the size
νQ × νQ, namely,

νCC = νQ(νQ + 1)

2
. (2.2.1)

In fact, D anticommutators have the Lorentz structure of the energy-momentum
operator Pµ. Therefore, up to D central charges could be absorbed in Pµ, gener-
ally speaking. In particular situations this number can be smaller, since although
algebraically the corresponding CC’s have the same structure as Pµ, they are
dynamically distinguishable. The point is that Pµ is uniquely defined through the
conserved and symmetric energy-momentum tensor of the theory.

Additional dynamical and symmetry constraints can further diminish the number
of independent central charges, see e.g. Section 2.2.1.

The total set of CC’s can be arranged by classifying CC’s with respect to their
Lorentz structure. Below we will present this classification for D = 2, 3 and 4, with
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2.2 Minimal supersymmetry 9

Table 2.1. The minimal number of supercharges, the complex dimension of the
spinorial representation and the number of additional conditions (i.e. the Majorana
and/or Weyl conditions).

D 2 3 4 5 6 7 8 9 10

νQ (1∗) 2 2 4 8 8 8 16 16 16
Dim(ψ)C 2 2 4 4 8 8 16 16 32
# cond. 2 1 1 0 1 1 1 1 2

special emphasis on the four-dimensional case. In Section 2.3 we will deal with
N = 2 superalgebras.

2.2.1 D = 2

Consider two-dimensional non-chiral theories with two supercharges. From the
discussion above, on purely algebraic grounds, three CC’s are possible: one Lorentz-
scalar and a two-component vector,

{Qα , Qβ} = 2(γ µγ 0)αβ(Pµ + Zµ) + i(γ 5γ0)αβZ . (2.2.2)

We refer to Appendix A for our conventions regarding gamma matrices. Zµ �= 0
would require existence of a vector order parameter taking distinct values in dif-
ferent vacua. Indeed, if this central charge existed, its current would have the
form

ζ µ
ν = ενρ ∂ρAµ, Zµ =

∫
ζ

µ
0 dz,

where Aµ is the above-mentioned order parameter. However, 〈Aµ〉 �= 0 will break
Lorentz invariance and supersymmetry of the vacuum state. This option will not be
considered. Limiting ourselves to supersymmetric vacua we conclude that a single
(real) Lorentz-scalar central charge Z is possible in N = 1 theories. This central
charge is saturated by kinks.

2.2.2 D = 3

The central charge allowed in this case is a Lorentz-vector Zµ, i.e.

{Qα , Qβ} = 2(γ µγ 0)αβ(Pµ + Zµ). (2.2.3)
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10 Central charges in superalgebras

One should arrange Zµ to be orthogonal to Pµ. In fact, this is the scalar central
charge of Section 2.2.1 elevated by one dimension. Its topological current can be
written as

ζµν = εµνρ ∂ρA, Zµ =
∫

d2x ζµ0. (2.2.4)

By an appropriate choice of the reference frame Zµ can always be reduced to a real
number times (0, 0, 1). This central charge is associated with a domain line oriented
along the second axis.

Although from the general relation (2.2.3) it is pretty clear why BPS vortices
cannot appear in theories with two supercharges, it is instructive to discuss this
question from a slightly different standpoint. Vortices in three-dimensional theories
are localized objects, particles (BPS vortices in 2 + 1 dimensions were previously
considered in [28]; see also references therein). The number of broken translational
generators is d, where d is the soliton’s co-dimension, d = 2 in the case at hand.
Then at least d supercharges are broken. Since we have only two supercharges in
the problem at hand, both must be broken. This simple argument tells us that for a
1/2-BPS vortex the minimal matching between bosonic and fermionic zero modes
in the (super) translational sector is one-to-one.

Consider now a putative BPS vortex in a theory with minimal N = 1 super-
symmetry (SUSY) in 2 + 1D. Such a configuration would require a world volume
description with two bosonic zero modes, but only one fermionic mode. This is
not permitted by the argument above, and indeed no configurations of this type
are known. Vortices always exhibit at least two fermionic zero modes and can be
BPS-saturated only in N = 2 theories.

2.2.3 D = 4

Maximally one can have 10 CC’s which are decomposed into Lorentz representa-
tions as (0, 1) + (1, 0) + (1/2, 1/2):

{Qα , Q̄α̇} = 2(γ µ)αα̇(Pµ + Zµ), (2.2.5)

{Qα , Qβ} = (�µν)αβZ[µν], (2.2.6)

{Q̄α̇ , Q̄β̇} = (�̄µν)α̇β̇ Z̄[µν], (2.2.7)

where (�µν)αβ = (σµ)αα̇(σ̄ ν)α̇β is a chiral version of σµν (see e.g. [29]). The

antisymmetric tensors Z[µν] and Z̄[µν] are associated with domain walls, and reduce
to a complex number and a spatial vector orthogonal to the domain wall. The (1/2,
1/2) CC Zµ is a Lorentz vector orthogonal to Pµ. It is associated with strings (flux
tubes), and reduces to one real number and a three-dimensional unit spatial vector
parallel to the string.
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2.3 Extended SUSY 11

2.3 Extended SUSY

In four dimensions one can extend superalgebra up to N = 4, which corresponds
to sixteen supercharges. Reducing this to lower dimensions we get a rich variety
of extended superalgebras in D = 3 and 2. In fact, in two dimensions the Lorentz
invariance provides a much weaker constraint than in higher dimensions, and one
can consider a wider set of (p, q) superalgebras comprising p + q = 4, 8, or 16
supercharges. We will not pursue a general solution; instead, we will limit our task
to (i) analysis of central charges in N = 2 in four dimensions; (ii) reduction of
the minimal SUSY algebra in D = 4 to D = 2 and 3, namely the N = 2 SUSY
algebra in those dimensions. Thus, in two dimensions we will consider only the
non-chiral N = (2, 2) case. As should be clear from the discussion above, in the
dimensional reduction the maximal number of CC’s stays intact. What changes is
the decomposition in Lorentz and R-symmetry irreducible representations.

2.3.1 N = 2 in D = 2

Let us focus on the non-chiral N = (2, 2) case corresponding to dimensional
reduction of the N = 1, D = 4 algebra. The tensorial decomposition is as follows:

{QI
α , QJ

β } = 2(γ µγ 0)αβ

[
(Pµ + Zµ)δIJ + Z(IJ )

µ

]
+ 2i (γ 5γ 0)αβ Z{IJ }

+ 2i γ 0
αβZ[IJ ], I , J = 1, 2. (2.3.1)

Here Z[IJ ] is antisymmetric in I , J ; Z{IJ } is symmetric while Z(IJ ) is symmetric
and traceless. We can discard all vectorial central charges ZIJ

µ for the same reasons
as in Section 2.2.1. Then we are left with two Lorentz singlets Z(IJ ), which represent
the reduction of the domain wall charges in D = 4 and two Lorentz singlets TrZ{IJ }
and Z[IJ ], arising from P2 and the vortex charge in D = 3 (see Section 2.3.2). These
central charges are saturated by kinks.

Summarizing, the (2, 2) superalgebra in D = 2 is

{QI
α , QJ

β } = 2(γ µγ 0)αβ Pµ δIJ + 2i(γ 5γ 0)αβ Z{IJ } + 2i γ 0
αβZ[IJ ]. (2.3.2)

It is instructive to rewrite Eq. (2.3.2) in terms of complex supercharges Qα and Q
†
β

corresponding to four-dimensional Qα , Q̄α̇ , see Section 2.2.3. Then

{
Qα , Q†

β

}
(γ 0)βγ = 2

[
Pµγ µ + Z

1 − γ5

2
+ Z† 1 + γ5

2

]
αγ

, (2.3.3)

{
Qα , Qβ

}
(γ 0)βγ = −2Z′ (γ5)αγ ,

{
Q†

α , Q†
β

}
(γ 0)βγ = 2Z′† (γ5)αγ .
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12 Central charges in superalgebras

The algebra contains two complex central charges,Z andZ′. In terms of components
Qα = (QR , QL) the nonvanishing anticommutators are

{QL, Q†
L} = 2(H + P), {QR , Q†

R} = 2(H − P),

{QL, Q†
R} = 2iZ, {QR , Q†

L} = −2iZ†,

{QL, QR} = 2iZ′, {Q†
R , Q†

L} = −2iZ′†.

(2.3.4)

It exhibits the automorphism QR ↔ Q
†
R , Z ↔ Z′ associated [30] with the transi-

tion to a mirror representation [31]. The complex central charges Z and Z′ can be
readily expressed in terms of real Z{IJ } and Z[IJ ],

Z = Z[12] + i

2

(
Z{11} + Z{22}) , Z′ = Z{12} + Z{21}

2
− i

Z{11} − Z{22}

2
. (2.3.5)

Typically, in a given model either Z or Z′ vanish. A practically important example
to which we will repeatedly turn below (e.g. Sections 3.5 and 4.5.3) is provided by
the so-called twisted-mass-deformed CP(N − 1) model [32]. The central charge
Z emerges in this model at the classical level. At the quantum level it acquires
additional anomalous terms [33, 34]. Both Z �= 0 and Z′ �= 0 simultaneously in a
contrived model [33] in which the Lorentz symmetry and a part of supersymmetry
are spontaneously broken.

2.3.2 N = 2 in D = 3

The superalgebra can be decomposed into Lorentz and R-symmetry tensorial
structures as follows:

{QI
α , QJ

β } = 2(γ µγ 0)αβ[(Pµ + Zµ)δIJ + Z(IJ )
µ ] + 2i γ 0

αβZ[IJ ], (2.3.6)

where all central charges above are real. The maximal set of 10 CC’s enter as a
triplet of spacetime vectors ZIJ

µ and a singlet Z[IJ ]. The singlet CC is associated
with vortices (or lumps), and corresponds to the reduction of the (1/2,1/2) charge
or the 4th component of the momentum vector in D = 4. The triplet ZIJ

µ is decom-
posed into an R-symmetry singlet Zµ, algebraically indistinguishable from the

momentum, and a traceless symmetric combination Z
(IJ )
µ . The former is equiva-

lent to the vectorial charge in the N = 1 algebra, while Z
(IJ )
µ can be reduced to a

complex number and vectors specifying the orientation. We see that these are the
direct reduction of the (0,1) and (1,0) wall charges in D = 4. They are saturated
by domain lines.
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