Practical Digital Wireless Signals

Do you need to know what signal type to select for a wireless application? Quickly develop a useful expertise in digital modulation with this practical guide, based on the author's industry experience of more than 30 years. You will understand the physical meaning behind the mathematics of wireless signals and learn the intricacies and trade-offs in signal selection and design.

Key features:

- Six modulation families and 12 modulation types are covered in depth
- A quantitative ranking of relative cost incurred to implement any of 12 different modulation types
- Extensive discussions of the Shannon Limit, Nyquist filtering, efficiency measures, and signal-to-noise measures
- Radio wave propagation and antennas, multiple access techniques, and signal coding principles are all covered
- Spread spectrum and wireless system operation requirements are presented.

Earl McCune is a practicing engineer and Silicon Valley entrepreneur. A graduate of UC Berkeley, Stanford University, and UC Davis, he has over 30 years of post-graduate industry experience in wireless communications circuits and systems. Now semi-retired, he has founded two successful start-up companies, each of them winning industrial awards for their technical innovation.

THE CAMBRIDGE RF AND MICROWAVE ENGINEERING SERIES

Series Editor

Steve C. Cripps, Visiting Professor, Cardiff University

Peter Aaen, Jaime A. Plá and John Wood, Modeling and Characterization of RF and Microwave Power FETs

Dominique Schreurs, Máirtín O'Droma, Anthony A. Goacher and Michael Gadringer, RF Power Amplifier Behavioral Modeling

Fan Yang and Yahya Rahmat-Samii, *Electromagnetic Band Gap Structures in Antenna Engineering*

Enrico Rubiola, Phase Noise and Frequency Stability in Oscillators

Forthcoming

J. Stephenson Kenney and Armando Cova, RF Power Amplifier Design and Linearization

Stepan Lucyszyn, Advanced RF MEMS

Patrick Roblin, Nonlinear RF Circuits and the Large-Signal Network Analyzer

David E. Root, Jason Horn and Jan Verspecht, X-Parameters

Dominique Schreurs, Microwave Techniques for Microelectronics

Sorin Voinigescu, High-Frequency Integrated Circuits

John L. B. Walker, Handbook of RF and Microwave Solid-State Power Amplifiers

John Wood, Peter Aaen and Mohamed Sayed, *Modern RF and Microwave Measurement Techniques*

Practical Digital Wireless Signals

EARL McCUNE

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521516303

© Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-51630-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> Dedicated to the memory of my father Earl McCune Sr. for instilling in me the great value of intuitive understanding of technical fundamentals

1

2

Cambridge University Press 978-0-521-51630-3 - Practical Digital Wireless Signals Earl McCune Frontmatter <u>More information</u>

Contents

Pre	face	page xv
Def	initions and acronyms	Х
Teri	minology and notation	XX
Key	ing, states, and block diagram construction	
1.1	Radio communications: what really happens?	
1.2	Modulation states: "keyed"	
1.3	DWC signal representations	
	1.3.1 "Digital" modulations of an analog signal	
	1.3.2 Polar representation	
	1.3.3 Quadrature representation	· · · · · · · · · · · · · · · · · · ·
	1.3.4 Transformations between signal representations	
1.4	Frequency domain representations	1
1.5	Implementing a DWC system	1
	1.5.1 Symbol construction	1
	1.5.2 Symbol-to-signal-state mapping	1
	1.5.3 State transitions	1
	1.5.4 Modulator	1
	1.5.5 Power amplifier (PA)	1
	1.5.6 Radio front-end	1
	Simplex	1
	Duplex	1
	Duplexer vs. diplexer	2
Refe	erences	2
For	further reading	2
Con	nmon issues and signal characterization	2
2.1	Power spectral density (PSD)	2
2.2	Occupied bandwidth	2
	2.2.1 Useful signal-bandwidth measures	2
	Bounded power-spectral-density (B-PSD) bandwidth	2
	Fractional power-containment bandwidth	3
	Transmitter mask	3

CAMBRIDGE

Cambridge University Press 978-0-521-51630-3 - Practical Digital Wireless Signals Earl McCune Frontmatter <u>More information</u>

viii	Con	Contents			
		2.2.2 Bad signal-bandwidth measures	33		
		Null-to-null bandwidth	33		
		Equivalent white-noise signal bandwidth (ENSB)	34		
	2.3	Bandlimiting filtering	35		
		2.3.1 Exact vs. good enough	37		
		2.3.2 Filtering pulses	37		
		Full response	38		
		Partial response	38		
		2.3.3 Superposition	38		
		2.3.4 Intersymbol interference (ISI)	40		
		2.3.5 Nyquist filters	40		
		2.3.6 Matched filtering	43		
	2.4	Informational diagrams	47		
		2.4.1 Constellation diagram	47		
		2.4.2 Vector diagram	48		
		2.4.3 "Eye" diagram	48		
	2.5	Interference and near-far interference (NFI)	50		
	2.6	Signals and noise	52		
		2.6.1 Signal-to-noise ratio (SNR)	53		
		2.6.2 Carrier-to-noise ratio (CNR)	53		
		2.6.3 Information bit-energy-to-noise-density (IBEND) E_b/N_0	53		
	2.7	Channel (Shannon) capacity	56		
	2.8	Important DWC signal measures	58		
		2.8.1 Efficiency measures	58		
		Bandwidth efficiency	58		
		Energy (DC) efficiency	59		
		Output efficiency	61		
		Peak efficiency	61		
		Backoff efficiency	61		
		Supply-referenced efficiency	62		
		Power-added efficiency	63		
		Overall transmitter efficiency	63		
		Power efficiency	63		
		2.8.2 Error vector	65		
		2.8.3 Off-channel power ratio	66		
		2.8.4 Envelope dynamics	67		
		Signal power	67		
		Peak-to-average power ratio (PAPR)	67		
		PDF/CDF/CCDF curves	68		
	2.9	Circuitry impacts from the signal selection	70		
		Constant-envelope (CE) signals	71		
		Envelope-varying (EV) signals	71		
		Output-power control	72		

	Cor	ntents	ix
			70
		Duplex method	72
	D . (Siew rate	12
	Кег	ferences	72
	FOr	Turiner reading	12
3	Im	portant details on results from Shannon, Nyquist, and others	74
	3.1	DWC channel capacity - the fundamental work of Claude Shannon	74
		3.1.1 Basic capacity relationships to SNR	75
		3.1.2 Basic capacity relationships to IBEND	78
		3.1.3 Finite available power	81
		3.1.4 Power vs. bandwidth for a set capacity	81
		3.1.5 Signal design region: adaptive modulation	83
	3.2	Equivalent noise bandwidth (ENB)	85
		3.2.1 ENB of filters	86
		3.2.2 Limitations of the ENB concept	87
	3.3	Digital bandlimiting filtering	88
		3.3.1 Conventional digital filtering	88
		Finite-impulse-response (FIR) filters	88
		Infinite-impulse-response (IIR) filters	88
		3.3.2 Generalized Nyquist filter construction (GNFC)	89
		3.3.3 The DZ (derivative-zeroed) pulse family	95
		3.3.4 Superposition lowpass filtering (SLPF)	98
	Ref	ferences	100
	For	further reading	100
4	Dig	gital amplitude modulation (ASK)	102
	4.1	Signals and characteristics	102
		4.1.1 Amplitude shift keying definition	102
		4.1.2 Modulation index and envelope dynamic range	103
		Important special case: on-off keying (OOK)	104
		4.1.3 ASK constellation diagrams	104
		4.1.4 Spectrum and signal bandwidth	104
		4.1.5 ASK bandwidth efficiency	106
		4.1.6 ASK power efficiency	107
		4.1.7 PAPR characteristics	108
		4.1.8 Additive noise	109
	4.2	ASK signal generation	111
		4.2.1 Variable gain amplifier (VGA)	111
		4.2.2 PA DC-power modulation	112
		4.2.3 Complete-power keying for OOK	113
		4.2.4 Transmitter energy efficiency characteristics	114
	4.3	ASK signal demodulation principles	114

4.3.1 Diode

118

Х

Cambridge University Press 978-0-521-51630-3 - Practical Digital Wireless Signals Earl McCune Frontmatter <u>More information</u>

Contents

		4.3.2	Demodulating logamp/received-signal-strength indication (RSSI)	119
		4.3.3	Automatic gain control (AGC)	120
		4.3.4	Coherent	121
	Ref	erences		123
	For	further	reading	123
5	Dig	ital freq	uency modulation: FSK	124
	5.1	Signa	ls and characteristics	124
		5.1.1	Frequency shift keying definition	124
		5.1.2	Modulation index	127
			Important special case: minimum shift keying (MSK)	130
		5.1.3	Spectrum and signal bandwidth	131
		5 1 4	Important special cases: Gaussian-filtered FSK	136
		5.1.4	FSK bandwidth efficiency	138
		5.1.5	FSK power efficiency	140
		5.1.0	Doppler snin	140
		5.1.7	Additive hoise	142
			Clicks and doublets	142
	5.2	FSK a	vignal generation	145
	5.2	521	Switched oscillators	145
		5.2.2	Voltage-controlled oscillator (VCO)	146
		5.2.3	Fractional-division loop	147
		5.2.4	Two-point modulation	148
		5.2.5	Opened-loop modulation	149
		5.2.6	Direct digital (frequency) synthesis (DDS, or also DDFS)	150
		5.2.7	Transmitter energy-efficiency characteristics	151
	5.3	FSK s	signal demodulation principles	151
		5.3.1	Limiters: compression and capture effects	152
		5.3.2	Slope demodulation	155
		5.3.3	Frequency discriminators	155
			Resonator	156
			Delay line	156
			Pulse density	157
		5.3.4	D-flipflop (DFF)	157
		5.3.5	Phaselock loop (PLL)	158
	Ref	erences		158
	For	further	reading	159
6	Dig	ital pha	se modulation: PSK	160
	6.1	Signa	ls and characteristics	160
			Author's dilemma	160
		6.1.1	Phase shift keying	160

CAMBRIDGE

7

Cambridge University Press 978-0-521-51630-3 - Practical Digital Wireless Signals Earl McCune Frontmatter <u>More information</u>

Con	tents		xi
	6.1.2	Vector diagrams	163
		CDF examples for linear transitions	165
	6.1.3	PSK phase diagram	166
	6.1.4	Delay equivalence	167
	6.1.5	Offset modulation (O-PSK)	167
	6.1.6	Rotated modulation	169
	6.1.7	Spectrum and signal bandwidth	170
	6.1.8	Bandwidth efficiency	174
	6.1.9	Power efficiency	175
	6.1.10	Doppler effects	175
	6.1.11	Additive noise	177
		Author's dilemma reprise	178
6.2	PSK sig	gnal generation	178
	6.2.1	Quadrature modulation	179
	6.2.2	Mixer (BPSK)	179
	6.2.3	Delay	180
	6.2.4	Direct digital synthesis (DDS)	180
6.3	PSK sig	gnal demodulation principles	180
	6.3.1	Quadrature demodulation	181
	6.3.2	Differential demodulation	182
	6.3.3	Direct phase demodulation	183
Refe	erences		184
For	further re	eading	184
Cor	nbined d	igital modulations: QAM and OFDM	185
7.1	Signal	types and characteristics	185
7.2	Quadra	ture amplitude modulation (QAM)	185
	7.2.1	Constellation diagrams	186
	7.2.2	Spectrum and signal bandwidth	189
	7.2.3	Bandwidth efficiency	190
	7.2.4	Power efficiency	190
	7.2.5	PAPR characteristics	192
	7.2.6	Offset QAM	193
	7.2.7	Doppler sensitivity	193
	7.2.8	Additive noise performance	195
	7.2.9	Demodulation principles for QAM	202
	7.2.10	Tradeoff summary	203
	7.2.11	Signal generation and demodulation	204
		Essentially always quadrature	204
		Using DDS to generate QAM	204
7.3	Orthog	onal frequency division modulation (OFDM)	204

Why does OFDM exist?

204

CAMBRIDGE

Xİİ

Cambridge University Press 978-0-521-51630-3 - Practical Digital Wireless Signals Earl McCune Frontmatter <u>More information</u>

Contents

			Basic OFDM principles	206
			Signal order of OFDM	208
		7.3.1	OFDM fundamentals	208
		7.3.2	Waveform discontinuity	210
		7.3.3	Cyclic prefix	211
		7.3.4	OFDM constellation diagrams	212
		7.3.5	Spectrum and signal bandwidth	213
		7.3.6	Bandwidth efficiency	214
		7.3.7	PAPR characteristics	216
		7.3.8	Energy efficiency	218
		7.3.9	Doppler sensitivity	219
		7.3.10	Signal generation and demodulation	220
			Important special case: 3G long-term evolution (LTE)	221
		7.3.11	Demodulation principles for OFDM	223
		7.3.12	Tradeoff summary	224
	Refe	erences		225
	For	further	reading	225
8	Spr	ead spe	ectrum	226
	8.1	Gener	al principles and characteristics	226
		8.1.1	Cyclic cancellation	228
		8.1.2	Synchronization	228
		8.1.3	Interference suppression	231
		8.1.4	Process gain	232
		8.1.5	Jamming margin	233
		8.1.6	Spreading codes, and chips	234
	8.2	Freque	ency-hopping spread spectrum	235
		8.2.1	Basic operation	235
		8.2.2	Synchronization	237
		8.2.3	Slow and fast frequency hopping	238
		8.2.4	Modulation selection	238
		8.2.5	Process gain	239
		8.2.6	Interference suppression	239
		8.2.7	Jamming margin	240
	8.3	Direct	-sequence spread spectrum	240
		8.3.1	Basic operation	240
			Negative input SNR	241
		8.3.2	Synchronization	242
		8.3.3	De-spreader location	243
		8.3.4	Modulation selection	244
		8.3.5	Process gain	244
		8.3.6	Interference suppression	245
		8.3.7	Jamming margin	245

	Contents	xiii
	8.4 Summary	246
	References	246
	For further reading	247
9	Wireless propagation and antenna fundamentals	248
	9.1 Free-space propagation	249
	9.2 Antenna properties	250
	9.2.1 Antenna gain	251
	9.2.2 Directivity	253
	9.2.3 Near and far fields	254
	9.2.4 Polarization	255
	9.3 Path loss	256
	9.4 Optical equivalence of propagation	258
	9.4.1 Reflections	259
	9.4.2 Shadowing, diffraction, and refraction	261
	9.4.3 Polarization	262
	9.5 Doppler shifts	262
	9.6 Fading	262
	Block errors and fade margin	263
	9.7 Diversity	264
	Spatial diversity	265
	Polarization diversity	265
	Frequency diversity	266
	Diversity summary	266
	9.8 Level diagrams	266
	GEO satellite system example	267
	Personal-area communication example	268
	9.9 Specific absorption ratio (SAR)	269
	References	269
	For further reading	269
10	Principles of coding	270
	10.1 Why do coding? And what is coding anyway?	270
	10.2 Basic principles of coding	271
	10.3 Coding for bandwidth efficiency	273
	10.4 Coding for spectrum control and link operation	274
	10.5 Coding for error control	277
	10.5.1 Approaching the Shannon Limit	277
	10.5.2 New tradeoffs	280
	10.5.3 Block coding	281
	Block coding for error detection	281
	Block coding for error correction	282

CAMBRIDGE

Cambridge University Press 978-0-521-51630-3 - Practical Digital Wireless Signals Earl McCune Frontmatter <u>More information</u>

xiv	Contents	
	10.5.4 Convolutional coding	284
	10.5.5 Interleaving: coding for burst errors	287
	10.5.6 Iteratively decoded coding (e.g. Turbo, LDPC)	289
	10.5.7 Combination coding: inner and outer codes	290
	10.5.8 Trellis coded modulation (TCM)	292
	Trellis diagrams	292
	Bandwidth efficiency	295
	10.6 Coding for channel throughput	295
	References	290
	For further reading	297
11	Multiple access techniques	299
	11.1 Carrier sense (CSMA)	299
	11.1.1 Protocol basics	300
	11.1.2 Hidden node problem	300
	11.2 Frequency division (FDMA)	301
	11.2.1 Channel designations	302
	11.2.2 Coverage strategies	303
	11.2.3 Protocol basics	304
	11.3 Time division (TDMA)	304
	11.3 1 Framing	305
	11.3.2 Burst ramp-up and ramp-down spectral effects	303
	11.4 Code division (CDMA)	308
	11.4.1 Signal separation	308
	11.4.2 Multiple access interference (MAI)	310
	11.4.3 Power control is essential	311
	11.4.4 Logical channels: "code space"	314
	11.5 Orthogonal FDMA	314
	11.5.1 Subcarrier assignment	315
	11.5.2 Orthogonality in the uplink	315
	11.6 Space division (SDMA)	316
	References	318
	For further reading	319
12	Signal tradeoffs and system evolution	320
	12.1 Receiver implications of modulation choice	322
	12.2 Signal-bandwidth efficiency comparison	327
	12.3 Power amplifier cost issues	330
	12.4 Signal tolerance of channel-induced problems	331
	12.5 Keep-it-Simple ranking of DWC signals	332

Contents			XV
12.6 Exist	ing systems and their m	odulation selections	335
	Long, long ago in a	a place not very far away	336
References	;		340
For further	reading		340
Tutorial A	ppendices		
Appendix	A: Phasor review		341
Appendix	B: Decibels (dB) really	are simple	343
Appendix	C: Analog modulation l	basics	347
Appendix	D: Quadrature modulati	ion and demodulation principles	359
Appendix	E: Polar modulation and	d demodulation principles	372
Appendix	F: The derivative-zeroe	d pulse family	379
Appendix	G: Selected DWC stand	lards and their modulations	389
	Remote Control	Zigbee, RKE, TPMS	
	Cordless Telephone	CT, PHS, DECT	
	Cellular	Analog (historical), NADC, PDC, GSM/C	GPRS,
		EDGE, Wideband-CDMA, HSDPA, HSU	PA, LTE,
		cdmaOne (IS-95), cdma2000 1×RTT, EV-	DO
	Public Service	Analog (historical), APCO-25, TETRA	
	Wireless Data	802.11 (DS and FH), Wi-Fi 1 (802.11b),	Wi-Fi 2
		(802.11a/g), WiMAX (fixed), WiMAX (n	nobile)
	Personal Area	Bluetooth 1.0, Bluetooth – EDR 2.0, Blue	etooth –
		EDR 2.1	
Index			401

Preface

Wireless communications is rapidly becoming one of the ubiquitous technological underpinnings of modern society (such as electric power, fossil fuels, automobiles, etc.). Few people think about the technology within their mobile phones, remote controls, garage door openers, GPS navigation devices, and so on. These devices are always at hand and reliably work for the user.

Yet even within the electrical engineering (EE) community, radio communication techniques have a reputation as a "Black Art" that can only be successfully practiced by "RF people". This is changing, albeit slowly. Any significant progress in successfully opening this vital technology widely to more practitioners must remove this "Black Art" stigma. In my opinion this is best achieved through outreach from existing successful "RF people". This outreach must occur through many channels, such as this book and new courses in both academic and industrial training.

Today it takes many years to train communications engineers in the intricacies of wireless signal modulation tradeoffs. I am a product of this decades-long process. Much of this difficulty, for me anyway, is a consequence of the mathematical approach taken to all modulation training. The objective of this book is to begin to add a comprehensive yet physical approach alongside this traditional modulation training.

The contents of this book are drawn from the nearly 40 years of experience I have with radio communication technology. Being much more of a physics-based person instead of a mathematician, to build my own understanding of this material over these decades I have put in a lot of effort to get through the mathematics and into also understanding the underlying physical relationships. Through these pages I can share my results with you.

One major premise of this book comes from advice I received from my father as I began learning electronics: "Don't memorize equations to learn the material. Instead, carefully learn the fundamental principles. Then as you need an equation, if it is not memorized it can be quickly derived on the spot." He lived by this rule, and it has definitely served me very well over the years. And now in the age where computers do much of the math anyway, it is vital to be able to check any computer output for reasonableness. A surprising output may be the result of a programming error which can be quickly fixed to avoid embarrassment. Then again, it may be a clue to a significant technology contribution. The difference can only be known if fundamental physical principles are well understood.

The presentation order within this book is carefully planned so that material needed to understand the topic at hand has been presented previously as much as possible. Cross

xviii Preface

references to important sections are included to facilitate connections to supporting material.

In this approach, mathematics is a tool for later illustration instead of the primary window through which to view and learn the material. Certainly, for those readers who wish to delve more deeply into the theory of any topic, a suggested list for further reading into the excellent theoretic literature is provided at the end of each chapter.

Unique contributions in this book include:

- Detailed discussion on the consequences of the Shannon capacity, showing how this limit impacts bandwidth efficiency, transmitter power, and signal design.
- Introduction of a channel utilization factor U in Shannon's capacity equation, showing how system performance is affected when operation at the theoretical capacity is not attempted.
- A completely non-mathematical presentation on principles of coding for improved bandwidth efficiency (compression), for error control, and for spectral shaping and link control. This presentation includes examples of how the error correction process works when decoding convolutional codes.
- Clarification of the difference between signal-to-noise ratio and IBEND (also called E_b/N_0).
- Clarification of the difference between power efficiency and energy efficiency.
- Quantification of six different measures of energy efficiency.
- Details on the Generalized Nyquist Filter Construction (GNFC) technique, showing that the widely used spectral raised-cosine filter can be greatly improved.
- Resolution of the perceived ambiguity between "diplexer" and "duplexer" these are very different.
- Introduction of a family of "maximally smooth" pulses/windows at their endpoints: the Derivative Zeroed pulses.
- Using the superposition lowpass filter (SLPF) to greatly reduce transmitter hardware and also eliminate the *x*/sin*x* corrector for conventional Nyquist filtering.
- Demodulation principles, listed separately for all modulation types.
- Complete description for FSK modulation index h for two normalizations: fixed frequency spacing, and fixed total deviation.
- Modified Carson's Rule for estimating the bandwidth of FSK signals "60 dB down".
- The first physical explanation I have ever seen for the FM threshold effect.
- Clarification of the difference between pure PSK, a constant envelope signal, and conventional PSK which really is a special case of QAM.
- Clarification that CPM is really a FSK, and is not a PSK.
- Presentation of OFDM-signal principles without using the inverse Fourier Transform why the Fourier transform technique works for OFDM is derived later.
- Explanation of why, physically, matched filters work so well.
- Introduction of the Keep-it-Simple (KIS) technique of signal modulation selection.
- Quantified comparison among 12 digital modulation types to illustrate their relative costs of implementation.

This book is aimed at practitioners in industry who may be new to digital communications via radio. It assumes a basic familiarity with radio concepts, so it is not a tutorial in

Preface

хіх

general radio technology. This book can be used as a supplementary reference for university and graduate study. Any architect of communications features in products will find this very useful – particularly if they are new to digital radio.

Basic familiarity with analog modulation for AM, FM, and PM is covered in tutorial Appendix C, to provide an internal reference to the important topics drawn from for digital modulations.

A *completely non-mathematical* discussion of signal and information coding is in Chapter 10. This chapter was a challenge because while coding is widely used and of vital importance to modern digital communications, its successful implementation requires intensive mathematical understanding. Yet to understand what coding is and why it works it is not necessary to use mathematics at all. For those needing to get into implementation details of coding a bibliography is presented for further study at the end of Chapter 10.

Saving the best for last, I wish to particularly acknowledge the tremendous help of Dr. Dietmar Wenzel in editing this manuscript, and to Professors Khaled Abdel-Ghaffar and Zhi Ding from the University of California Davis in helping work out the non-mathematical treatment of coding principles. Dr. Floyd M. Gardner remains a long-time inspiration and a particular guide for the ideas of Section 3.1 on consequences from Shannon's limit. The help of David Huynh, Dave Jackson, and Javier Castelblanco from Agilent Technologies in making the many measurements in Appendix G made that part possible.

Special thanks go to series editor Steve Cripps, who made it very clear to me that this book should be written NOW.

And the tolerance of my wife Barbara to the seemingly endless hours spent writing, drawing, rewriting, and editing needed for the preparation of this book is beyond measure. My gratitude to you is boundless!

I fervently hope that all who read this book, and who may use it as an additional reference, will enjoy this approach as much as I have enjoyed writing it.

Earl McCune

Definitions and acronyms

Term	Definition
Filter	a signal processing operation where the domain of the input and output signals is unchanged
Transform	a signal processing operation where the domain of the input and output signals is changed
Signal Circle	the circle of unit radius in the <i>I-Q</i> plane, containing all possible constellation points
Acronym	Meaning
ACK	acknowledgement
ACP	adjacent-channel power
ACPR	adjacent-channel power ratio
ADC	analog-to-digital converter
AGC	automatic gain control
AltCP	alternate channel power
AM	amplitude modulation
ARQ	automatic repeat request
ASK	amplitude-shift keying
BASK	binary amplitude-shift keying
BER	bit error rate
BFSK	binary frequency-shift keying
BH3	Blackman–Harris 3-term pulse (window)
bps	bits per second
B-PSD	bounded power spectral density
BPSK	binary phase-shift keying
BW	bandwidth
CCC	cubic congruence codes
CCDF	complementary cumulative density function
CCK	complementary code keying
CDF	cumulative distribution function
CDM	code-division multiplexing
CDMA	code-division multiple access
CE	constant envelope

Definitions and acronyms

CMOS complementary metal-oxide-semiconductor CNR carrier-to-noise ratio CORDIC coordinated-rotation digital computer (algorithm) cyclic prefix cp CP continuous phase continuous-phase frequency-shift keying **CPFSK** CPM continuous-phase modulation cPSK conventional PSK CRC cyclic redundancy check CSMA carrier-sense multiple access CTS clear to send DAC digital-to-analog converter dB decibel dBc decibels relative to carrier (total signal) power DC direct current DDFS direct digital frequency synthesis DDS direct digital synthesizer DFF D type flip-flop discrete Fourier Transform DFT DLL delay-locked loop DMT discrete multi-tone D-PSK differential phase-shift keying direct sequence DS DSB double sideband DSP digital signal processing direct-sequence spread spectrum DSSS DWC digital wireless communication **DZEn** derivative-zeroed even pulse (window) of order n derivative-zeroed pulse (window) of order n DZn EC error correction ECC error-correction code ED error detection EDGE enhanced data rates for GSM evolution EDR envelope dynamic range EIRP effective isotropic radiated power EM electromagnetic equivalent noise bandwidth ENB **ENSB** equivalent noise signal bandwidth EV envelope varying EVM error-vector magnitude EVP error-vector phase FD full-duplex frequency division multiplexing FDM

ххі

xxii **Definitions and acronyms**

FDMA	frequency division multiple access
FEC	forward error correction
FET	field effect transistor
FFH	fast frequency hopping
FFT	fast Fourier Transform
FH	frequency hopping
FHSS	frequency-hopping spread spectrum
FIBP	fractional in-band power
FIR	finite impulse response
FLL	frequency-lock loop
FM	frequency modulation
FOOB	fractional out-of-band power
FR	full response
FSK	frequency-shift keying
FUR	Fourier uncertainty relation
GFSK	Gaussian-filtered frequency-shift keying
GHz	gigahertz (billion cycles per second)
GLPF	Gaussian lowpass filter
GMSK	Gaussian-filtered minimum shift keying
GNFC	generalized Nyquist filter construction
GPRS	general packet radio service
GSM	global system of mobile communication
HD	half-duplex
Ι	in-phase axis; in-phase signal component
IBEND	Information-Bit-Energy-to-Noise Density ratio
IEEE	Institute of Electrical and Electronic Engineers TM
IIR	infinite impulse response
ISI	inter-symbol interference
ISR	interference-to-signal ratio
kHz	kilohertz (thousand cycles per second)
KIS	keep-it-simple
LFSR	linear feedback shift register
LO	local oscillator
LOS	line of sight
LPF	lowpass filter
LTE	long-term evolution of the third generation cellular network
М	signal order, number of available signal states
MA	multiple access
MAI	multiple access interference
M-ASK	M-ary amplitude-shift keying
M-FSK	M-ary frequency-shift keying
MHz	megahertz (million cycles per second)
MIMO	multiple-input multiple-output

Definitions and acronyms

M-PSK M-ary phase-shift keying MSK minimum-shift keying NACK not acknowledged **NBFM** narrowband frequency modulation NBPM narrowband phase modulation near-far interference NFI NLOS non line of sight OB occupied bandwidth OBO output backoff OFDM orthogonal frequency division multiplexing, or orthogonal frequency division modulation (preferred) **O-FDMA** orthogonal frequency division multiple access OOB out of band OOK on-off keving O-PSK offset phase-shift keying PA power amplifier PAE power-added efficiency PAM pulse amplitude modulation PAN personal area network PAPR peak-to-average power ratio PD phase detector probability density function pdf PDF envelope probability density function PDMA polarization division multiple access PFD phase-frequency detector PG process gain PLL phaselock loop PM phase modulation ppm part per million pure PSK pPSK PR partial response PRN pseudo-random number PSD power spectral density PSK phase-shift keying 0 quadrature axis; quadrature signal component QAM quadrature amplitude modulation QCC quadratic congruence codes quadrature demodulator QD QM quadrature modulator **QPSK** quaternary phase-shift keying RBW resolution bandwidth RF radio frequency remote keyless entry

RKE

xxiv **Definitions and acronyms**

RLL	run-length limited
RSC	recursive systematic convolutional (encoder)
RSSI	received signal-strength indication
RTS	request to send
RX	receiver
SAR	specific absorption rate
SC	suppressed carrier
SC-FDMA	single carrier frequency division multiple access
SFH	slow frequency hopping
SLPF	superposition lowpass filter
SNR	signal-to-noise ratio
Sps	symbols per second
SRC	spectral raised cosine
SRRC	spectral square-root raised cosine
SS	spread spectrum
SSQAM	step-square quadrature amplitude modulation
TDM	time division multiplexing
TDMA	time division multiple access
TETRA	TErresTrial RAdio, a TDMA network designed for public service
	applications
tQAM	triangular arrangement of QAM constellation points
TSAD	time-shift angle demodulator
TX	transmitter
ТХР	transmitter power
UHF	ultra high frequency (300-3000 MHz)
UMTS	universal mobile telephone service
VCO	voltage-controlled oscillator
VHF	very high frequency (30–300 MHz)
WBFM	wideband frequency modulation
W-CDMA	wideband code division multiple access
WLAN	wireless local area network

Terminology and notation

There are two conventions followed in the use of terminology within this book. They are:

- 1. Terms and ratios in linear units are in lower case letters
- 2. Terms and ratios in logarithmic (dB) units are in UPPER CASE letters

One of the tendencies I have noted in the literature is that this separation is rarely applied. This forces a reader to infer what an author is trying to convey from either the wider context of the writing, or from long contemplation after finishing reading in order to discern the author's intent. Both of these are causes for ambiguity, and at a minimum are opportunities for misunderstanding. In any work that is trying to teach principles and concepts this is certainly bad.

I have tried to contribute toward adding clarity by following these two conventions. This means that within each discussion if needed I have invented a lower case or upper case term as appropriate. While a reader who goes directly to a particular chapter in this book and does not read this page might think that the unconventional notation may be a typographical error, I can assure you that this is very deliberate on my part.

I hope that these conventions actually do contribute to additional clarity in the understanding of wireless communications signals.

List of terms new in this book

BW _{FSK}	modified Carson's Rule result for estimating FSK signal bandwidth, with
	units of frequency. (This does not follow the convention: capitalized BW is
	the traditional acronym for bandwidth.)
ср	cyclic prefix factor, value is between 0 and 1
cPSK	conventional PSK, a QAM signal with envelope variations where the signal
	constellation is restricted to points on the unit circle
edr	envelope dynamic range, the ratio of peak signal amplitude over minimum
	signal amplitude
EDR	decibel conversion of edr
γ	B/C, the inverse of channel capacity density
ibend	individual bit energy to noise density ratio, a descriptive name for E_b/N_0
IBEND	decibel conversion of ibend
papr	peak to average power ratio
PAPR	decibel conversion of papr
	accient conversion of pupi

xxvi Terminology and notation	
-------------------------------	--

pPSK	pure PSK, a constant envelope signal modulated solely in phase
snr	direct ratio of signal power over noise power in a specified bandwidth
SNR	decibel conversion of snr
U	channel capacity utilization factor, value is between 0 and 1
ψ_{PE}	power efficiency, one property of a signal constellation