HANDBOOK OF NEURAL ACTIVITY MEASUREMENT

Neuroscientists employ many different techniques to observe the activity of the brain, from single-channel recording to functional imaging (fMRI). Many practical books explain how to use these techniques, but in order to extract meaningful information from the results it is necessary to understand the physical and mathematical principles underlying each measurement. This book covers an exhaustive range of techniques, with each chapter focusing on one in particular. Each author, a leading expert, explains exactly which quantity is being measured, the underlying principles at work, and most importantly the precise relationship between the signals measured and neural activity.

The book is an important reference for neuroscientists who use these techniques in their own experimental protocols and need to interpret their results precisely, for computational neuroscientists who use such experimental results in their models, and for scientists who want to develop new measurement techniques or enhance existing ones.

ROMAIN BRETTE is Associate Professor in the Cognitive Science Department at Ecole Normale Supérieure, Paris.

ALAIN DESTEXHE is CNRS Research Director in the Unit for Neuroscience, Information and Complexity, Gif-sur-Yvette.
HANDBOOK OF NEURAL ACTIVITY MEASUREMENT

Edited by

ROMAIN BRETTE
Ecole Normale Supérieure, Paris

ALAIN DESTEXHE
CNRS, Unit for Neuroscience, Information and Complexity, Gif-sur-Yvette
Contents

List of contributors
ix

1 **Introduction**
Romain Brette and Alain Destexhe
1
References
7

2 **Electrodes**
Thomas Stieglitz
8
2.1 Introduction
8
2.2 Electrochemistry at electrodes
11
2.3 Electrode types
23
2.4 Reactions and processes at implanted electrodes
33
2.5 Amplifiers and filters for extracellular and intracellular recording
34
2.6 Conclusions
41
References
41

3 **Intracellular recording**
Romain Brette and Alain Destexhe
44
3.1 Introduction
44
3.2 Recording the membrane potential
51
3.3 Recording currents
67
3.4 Recording conductances
76
3.5 Conclusion
87
References
88

4 **Extracellular spikes and CSD**
Klas H. Pettersen, Henrik Lindén,
Anders M. Dale and Gaute T. Einevoll
92
4.1 Introduction
92
4.2 Biophysical origin of extracellular potentials
94
4.3 Local field potential (LFP) from a single neuron

Page 100

4.4 Extracellular signatures of action potentials

Page 107

4.5 Extracellular potentials from columnar population activity

Page 118

4.6 Estimation of current source density (CSD) from LFP

Page 123

4.7 Concluding remarks

Page 130

References

Page 130

5 Local field potentials

Claude Bédard and Alain Destexhe

Page 136

5.1 Introduction

Page 136

5.2 Modeling LFPs in resistive media

Page 139

5.3 Modeling LFPs in non-resistive media: general theory

Page 142

5.4 Modeling LFPs in non-resistive media: the continuum model

Page 149

5.5 Modeling LFPs in non-resistive media: the polarization model

Page 160

5.6 Modeling LFPs in non-resistive media: the diffusion model

Page 171

5.7 Synthesis of the different models

Page 175

5.8 Application of non-resistive LFP models to experimental data

Page 179

5.9 Discussion

Page 184

References

Page 188

6 EEG and MEG: forward modeling

Jan C. de Munck, Carsten H. Wolters and Maureen Clerc

Page 192

6.1 Introduction

Page 192

6.2 The current dipole model and the quasi-static approximation

Page 193

6.3 Analytical solutions

Page 205

6.4 The boundary element method

Page 221

6.5 The finite element method

Page 232

6.6 Other forward methods

Page 244

6.7 Discussion and conclusion

Page 244

References

Page 248

7 MEG and EEG: source estimation

Seppo P. Ahlfors and Matti S. Hämäläinen

Page 257

7.1 Introduction

Page 257

7.2 Relationship between neural activity and the MEG and EEG source estimates

Page 259

7.3 Source estimation methods

Page 263

7.4 Interpretation of the source estimates

Page 270

7.5 Comparison with other techniques and future developments

Page 277

References

Page 279
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Intrinsic signal optical imaging</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>Ron D. Frostig and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cynthia H. Chen-Bee</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>287</td>
</tr>
<tr>
<td>8.2</td>
<td>Background and theory</td>
<td>289</td>
</tr>
<tr>
<td>8.3</td>
<td>Relationship between intrinsic signals and underlying neuronal activation</td>
<td>300</td>
</tr>
<tr>
<td>8.4</td>
<td>More on intrinsic signals in the rat barrel cortex</td>
<td>305</td>
</tr>
<tr>
<td>8.5</td>
<td>Current trends and future directions</td>
<td>322</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>323</td>
</tr>
<tr>
<td>9</td>
<td>Voltage-sensitive dye imaging</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>S. Chemla and F. Chavane</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>327</td>
</tr>
<tr>
<td>9.2</td>
<td>Voltage-sensitive dye imaging: basics</td>
<td>328</td>
</tr>
<tr>
<td>9.3</td>
<td>On the origin of the VSD signal</td>
<td>337</td>
</tr>
<tr>
<td>9.4</td>
<td>Models of VSDI signals</td>
<td>341</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusion</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>355</td>
</tr>
<tr>
<td>10</td>
<td>Calcium imaging</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Fritjof Helmchen</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Fluorescent calcium indicators</td>
<td>363</td>
</tr>
<tr>
<td>10.2</td>
<td>Intracellular calcium dynamics</td>
<td>367</td>
</tr>
<tr>
<td>10.3</td>
<td>Calcium-dependent fluorescence properties</td>
<td>376</td>
</tr>
<tr>
<td>10.4</td>
<td>Simplified models of calcium dynamics</td>
<td>385</td>
</tr>
<tr>
<td>10.5</td>
<td>Application modes</td>
<td>394</td>
</tr>
<tr>
<td>10.6</td>
<td>Comparison with other techniques</td>
<td>402</td>
</tr>
<tr>
<td>10.7</td>
<td>Future perspectives</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>404</td>
</tr>
<tr>
<td>11</td>
<td>Functional magnetic resonance imaging</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>Andreas Bartels, Jozien Goense</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Nikos Logothetis</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>410</td>
</tr>
<tr>
<td>11.2</td>
<td>Physical basis of the fMRI signal</td>
<td>414</td>
</tr>
<tr>
<td>11.3</td>
<td>BOLD contrast mechanism</td>
<td>417</td>
</tr>
<tr>
<td>11.4</td>
<td>Analysis of fMRI signals</td>
<td>426</td>
</tr>
<tr>
<td>11.5</td>
<td>Neural basis of BOLD signals</td>
<td>438</td>
</tr>
<tr>
<td>11.6</td>
<td>Conclusions</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>456</td>
</tr>
</tbody>
</table>
viii Contents

12 Perspectives 470
 12.1 Extracellular recording 470
 12.2 Intracellular recording 471
 12.3 Local field potentials 472
 12.4 EEG and MEG: forward modeling 473
 12.5 EEG and MEG: source estimation 474
 12.6 Intrinsic optical imaging 474
 12.7 Voltage-sensitive dye imaging 475
 12.8 Calcium imaging 475
 12.9 Functional magnetic resonance imaging 477
References 477

The color plates are situated between pages 248 and 249.
Contributors

Seppo P. Ahlfors
Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard MIT Division of Health Sciences and Technology, Charlestown, MA, USA

Andreas Bartels
Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Claude Bédard
Unit for Neuroscience, Information and Complexity (UNIC), CNRS, Gif-sur-Yvette, France

Romain Brette
Department of Cognitive Science, Ecole Normale Supérieure, Paris, France

Frédéric Chavane
Institut de Neurosciences Cognitives de la Méditerranée, CNRS, Aix-Marseille Université, Marseille, France

Sandrine Chemla
Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada

Cynthia H. Chen-Bee
Department of Neurobiology and Behavior, Department of Biomedical Engineering, and the Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA

Maureen Clerc
Athena Project Team, INRIA Sophia Antipolis Méditerranée, France
List of contributors

Anders M. Dale
Departments of Radiology and Neurosciences, University of California San Diego, La Jolla, CA, USA

Jan C. De Munck
Department of Physics and Medical Technology, VU University Medical Centre, Amsterdam, The Netherlands

Alain Destexhe
Unit for Neuroscience, Information and Complexity (UNIC), CNRS, Gif-sur-Yvette, France

Gaute T. Einevoll
Department of Mathematical Sciences and Technology, and Center for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway

Ron D. Frostig
Department of Neurobiology and Behavior, Department of Biomedical Engineering, and the Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA

Jozien Goense
Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Matti S. Hämäläinen
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard MIT Division of Health Sciences and Technology, Charlestown, MA, USA

Fritjof Helmchen
Brain Research Institute, University of Zürich, Zürich, Switzerland

Henrik Lindén
Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway

Nikos Logothetis
Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Klas H. Pettersen
Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
List of contributors xi

Thomas Stieglitz
Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering IMTEK, Faculty of Engineering, and Bernstein Center Freiburg, Albert-Ludwig-University of Freiburg, Freiburg, Germany

Carsten H. Wolters
Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany