<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC electromigration 266, 302</td>
</tr>
<tr>
<td>Activation energy 61–62, 73</td>
</tr>
<tr>
<td>Activity coefficient 108</td>
</tr>
<tr>
<td>Adatoms 143</td>
</tr>
<tr>
<td>Aluminum</td>
</tr>
<tr>
<td>diffusion coefficient 74–75</td>
</tr>
<tr>
<td>effective charge number 228, 250</td>
</tr>
<tr>
<td>electromigration 224–226, 257</td>
</tr>
<tr>
<td>thermal expansion coefficient 387</td>
</tr>
<tr>
<td>vacancy concentration 80</td>
</tr>
<tr>
<td>void formation 317</td>
</tr>
<tr>
<td>grain boundary diffusion 196</td>
</tr>
<tr>
<td>Amorphous alloy 178, 213</td>
</tr>
<tr>
<td>Amorphous thin film 152</td>
</tr>
<tr>
<td>Anharmonicity 134</td>
</tr>
<tr>
<td>Anisotropic conductor 261, 264</td>
</tr>
<tr>
<td>Atomic density 53</td>
</tr>
<tr>
<td>Atomic volume 17, 53</td>
</tr>
<tr>
<td>Au-Al compound formation 172</td>
</tr>
<tr>
<td>Avogadro’s number 18</td>
</tr>
<tr>
<td>Avrami’s equation 359</td>
</tr>
<tr>
<td>Biaxial stress 124</td>
</tr>
<tr>
<td>Binding energy 31</td>
</tr>
<tr>
<td>Black’s equation 356</td>
</tr>
<tr>
<td>Blech and Herring model 244</td>
</tr>
<tr>
<td>Blech structure 238</td>
</tr>
<tr>
<td>Boltzmann’s distribution function 22</td>
</tr>
<tr>
<td>Boltzmann–Matano analysis 102</td>
</tr>
<tr>
<td>Bravais lattices 52</td>
</tr>
<tr>
<td>Built-in potential 60</td>
</tr>
<tr>
<td>Bulk diffusion couples 95</td>
</tr>
<tr>
<td>Bulk modulus 324, 373</td>
</tr>
<tr>
<td>Burgers vector 136</td>
</tr>
<tr>
<td>Capillary effect 38</td>
</tr>
<tr>
<td>Change-over thickness 184</td>
</tr>
<tr>
<td>Chemical potential 64, 311</td>
</tr>
<tr>
<td>Chemical vapor deposition 15</td>
</tr>
<tr>
<td>Clusters</td>
</tr>
<tr>
<td>coalescence 163</td>
</tr>
<tr>
<td>ripening 164</td>
</tr>
<tr>
<td>Cohesive energy 36</td>
</tr>
<tr>
<td>Collision frequency 21</td>
</tr>
<tr>
<td>Compliance 372</td>
</tr>
<tr>
<td>Compound formation 186</td>
</tr>
<tr>
<td>Compression 119</td>
</tr>
<tr>
<td>Conjugate force and flux 220</td>
</tr>
<tr>
<td>Constant volume process 337</td>
</tr>
<tr>
<td>Continuity equation 66</td>
</tr>
<tr>
<td>Contact angle 40</td>
</tr>
<tr>
<td>Coordination number of nearest neighbor 66</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>effective charge number 249</td>
</tr>
<tr>
<td>electromigration 279</td>
</tr>
<tr>
<td>thermal expansion coefficient 387</td>
</tr>
<tr>
<td>tin 319</td>
</tr>
<tr>
<td>Correlation factor 66</td>
</tr>
<tr>
<td>Creep</td>
</tr>
<tr>
<td>Nabarro–Herring creep 313</td>
</tr>
<tr>
<td>Coble creep 317</td>
</tr>
<tr>
<td>zero creep 41</td>
</tr>
<tr>
<td>Critical disc of nucleation 157</td>
</tr>
<tr>
<td>Critical thickness 186</td>
</tr>
<tr>
<td>Crystal systems 52</td>
</tr>
<tr>
<td>Crystallographic axes 51</td>
</tr>
<tr>
<td>Current crowding 271, 346</td>
</tr>
<tr>
<td>Current density gradient force 259</td>
</tr>
<tr>
<td>Darken’s analysis 98</td>
</tr>
<tr>
<td>DC electromigration 245–249, 302</td>
</tr>
<tr>
<td>Debye frequency 79</td>
</tr>
<tr>
<td>Debye temperature 79</td>
</tr>
<tr>
<td>Defect concentration 79</td>
</tr>
<tr>
<td>Deformation potential 229</td>
</tr>
<tr>
<td>Deposition parameters 26</td>
</tr>
<tr>
<td>Desorption frequency 143</td>
</tr>
<tr>
<td>Diffusion</td>
</tr>
<tr>
<td>adatoms 143</td>
</tr>
<tr>
<td>lattice 60, 86</td>
</tr>
<tr>
<td>grain boundary 192</td>
</tr>
<tr>
<td>surface 146</td>
</tr>
<tr>
<td>Diffusion barrier 281</td>
</tr>
<tr>
<td>Diffusion coefficient</td>
</tr>
<tr>
<td>interdiffusion 101, 107, 384</td>
</tr>
<tr>
<td>intrinsic 100</td>
</tr>
<tr>
<td>tracer 108</td>
</tr>
</tbody>
</table>
Diffusion equation 71–73

- Diffusion-induced grain boundary migration (DIGM) 207
- Diffusional creep 41, 223, 313
- Diffusional flux 6
- Disilicide 175, 177
- Dislocation
 - core energy 135–137
- Divergence 70, 338, 341
- Drift velocity 16, 241
- Driving force
 - electromigration 220, 226, 246, 367
 - stress-migration (creep) 226, 311
 - thermomigration 220, 299
- Effective charge number 226, 246, 250–251
- Einstein frequency 78
- Einstein mode of vibration 249
- Elastic modulus 121
- Elastic limit 123
- Elastic strain energy 123
- Electric field 219, 228, 241, 246
- Electrical potential 241
- Electromigration
 - alternative current 266, 302
 - Al interconnects 276
 - back-stress 251, 254
 - critical length 251
 - Cu interconnects 279
 - direct current 245–249, 302
 - flip-chip solder joints 341
 - in metals 223–225, 237
 - failure 270, 276, 279
- Electron effective mass 247, 249
- Electron wind force 246
- Energy
 - activation 61, 73
 - binding 31
 - bond 31
 - dislocation 135
 - elastic 123
 - evaporation 35
 - grain boundary 193
 - interatomic potential 32, 36
 - kinetic 22
 - pair potential 31
 - solid surface 46
 - strain 123
 - sublimation 35
 - surface 35, 37
- Enthalpy 65, 362
- Entropy 65, 362, 365
- Entropy generation 216
- Epitaxy
 - homo-epitaxial growth 149
- Equilibrium binary phase diagram 170
- Error function 97
- Eutectic structure 293
- Fick’s first law of diffusion 64
- Fick’s second law of diffusion 66
- Flip-chip technology
 - solder joint 341
- First law of thermodynamics 362
- First-phase formation 174, 178
- Fisher’s analysis 197
- Flux equation 15
- Formation energy
 - silicides 179
- Free electron model of conductivity 237
- Frequency
 - attempt 62
 - exchange 62
 - atomic vibration 76
 - surface vibration 143
- Friction coefficient 241
- Gas law
 - ideal gas law 17
- Gauss theorem 68, 70
- Gibbs free energy function 362
- Gibbs–Thomson potential 114
- Gibbs–Thomson equation 164
- Gold
 - interatomic potential energy 36
 - latent heat 35
 - surface energy 36
- Grain boundary
 - diffusivity 194, 202
 - energy 207
 - electromigration 264
 - migration 207
 - small-angle 206
 - tilt-type 193
- Grain boundary diffusion
 - comparison with bulk 194
 - Fisher’s analysis 197
 - small-angle 206
 - Whipple’s analysis 202
- Grain boundary migration
 - diffusion-induced 207
- Grain growth
 - abnormal 281
 - bamboo-type 276
- Growth
 - layered compound 84
 - two-layered compounds 185
- Growth kinetics
 - diffusion control 180
 - first phase 178
 - interfacial reaction control 180
- Growth modes 153
Ham’s model of growth 109
Heat
 crystallization 35
 evaporation 35
 sublimation 35
 melting 35
 latent 35
 internal 362
Heat capacity 363
Helmholtz free energy 311, 362
Heterogeneous nucleation 155
Hillock growth 320, 337
Homoeptaxy
 growth modes 153
 growth rate 149
Homologous temperature 244
Hooke’s Law 119
Huntington’s electron wind force 246, 367
Ideal gas law 17
Ideal solution 65
Interatomic distance 31
Interatomic potential energy 31, 36
Interconnects 4, 212, 243, 270–279, 317
Interdiffusion 95, 170
Interdiffusion coefficient 107, 384
Interfacial reaction coefficient 183
Intermetallic compounds 70
Internal energy 362
Interstitial diffusion 61, 75
Intrinsic diffusion coefficient 107–108
Irreversible processes 212
Isotropic materials 373
Johnson–Mehl–Avrami theory 358
Jump distance 63
Jump frequency 61
Kidson’s analysis 89
Kinetics
 growth 68, 108, 149, 17, 346
 nucleation 155
 precipitation 109, 113
Kink site 142
Kirkendall shift 98
Kirkendall (Frenkel) void 104
Lateral diffusion couples 174
Lattice constants 50
Lattice point 51
Lattice self diffusion 75
Lattice shift 104, 338
Lennard–Jones potential 33
Marker
 motion 98
 thin film reaction 186
Marker analysis 98, 186
Matano interface 103
Maxwell velocity distribution 24
Mean field consideration 112
Mean kinetic energy 19
Mean square velocity 26
Mean time to failure 355
Metals
 elastic constants 372
 Metastable materials 213
 Microstructure 276, 281
 Miller indices 54
 Misfit 141
 Misfit dislocation
 elastic energy 135
Mobility
 atom 64
 electron 241
 Modulus 121
 Molar volume 107
 Monolayer 189
 MOSFET 2
 Motion energy 62
Nabarro–Herring equation 313
Nano-twin 286
Nearest neighbors 66, 246
Ni-silicide
 lateral diffusion couple 174
 sequence of phase formation 174–175
Notation
 surface structure 51
Nucleation
 homogeneous 155
 heterogeneous 159
 surface disc 155
 void 104
Ohm’s law 242
Overhang structure 258
Packaging technology 212
Pancake-type void 346
Patterned surfaces 159
Phase transformation 358
Peltier effect 235
Penetration depth 200
Pipe diffusion 206
P–n junction 60
Poisson’s ratio 121
Potential energy 39
Pre-exponential factor 81
Pressure
 equilibrium vapor 20
 Pulsed direct current 245
Random walk 61
Reconstruction 54
Index

Reliability
- science 336
- failure 11, 270, 341, 350
- physical analysis 341
- statistical analysis 350
- Residence time 143
- RHEED 155
- Ripening 113
- Root mean square velocity 26
- Rutherford backscattering spectrometry 175

Residence time 143
- RHEED 155
- Ripening 113
- Root mean square velocity 26
- Rutherford backscattering spectrometry 175

Second law of thermodynamics 362
- Sectioning 200
- Seebeck effect 233
- Self-aligned silicide 5
- Shear modulus 123
- Shear strain 122
- Shear stress 123
- Silicide
- epitaxial 190
- formation 172
- formation energy 179
- transition metal silicides 179

Silicon
- activation energy of sublimation 145
- diffusion coefficient 76
- dopants 60
- elastic constants 375
- homoepitaxy 149
- self diffusion 75
- thermal expansion coefficient 387
- vapor pressure 146
- surface energy 159

Silver
- bulk diffusion 194
- grain boundary diffusion 194, 202
- Single-phase formation 170
- Small-angle grain boundaries 206
- SnPb solder 291, 295
- Solder joints 291
- Steps 142, 147
- Step-mediated growth 149
- Step spacing 141
- Step velocity 149
- Sticking coefficient 144
- Stirling’s approximation 365
- Stoney’s equation 127

Strain
- energy 123
- shear 121

Stress
- backstress in electromigration 251–254
- biaxial 124
- chemical potential 311
- compressive 118
- effect of stress on electromigration 285
- in-plane 129
- relaxation 332
- migration 309
- thermal 131–134
- intrinsic stress in thin films 134
- Strip 226
- Supersaturation 146, 159
- Surface
- atom density 35
- curvature 143
- desorption 143
- diffusion 146
- diffusivity 143
- energy 30
- flux 150
- kinetic processes 141
- reconstruction 54
- relaxation 54
- step 154
- step nucleation 156
- Surface energy
- mechanical approach 46
- surface energy systematic 44
- thermodynamic approach 46
- Surface step 142
- Surface structure 51
- Surface tension 36, 45
- Synchrotron radiation
- micro X-ray diffraction 328

Tensile stress 120, 126, 317
- Tensor 372
- Terraces 142
- Theoretical strength 119
- Thermal-electric effect 232
- Thermal expansion 133–134
- Thermodynamics
- energy functions 362
- Thermomigration
- driving force 299
- Pb-free solder joints 303

Thickness
- changeover 184
- critical 186
- Thin-film couple 171
- Thin-film marker 186–187
- Thin-film reactions
- diffusion control 89
- first phase 178
- reaction control 180
- Thomson effect 233

Tin
- cry 319
- hillock 320
- pest 319
- whisker 319
- Tracer diffusion coefficient 108
- Transition metal silicides 179
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple point</td>
<td>196</td>
</tr>
<tr>
<td>TTT diagram</td>
<td>360</td>
</tr>
<tr>
<td>Under-bump-metallization</td>
<td>7</td>
</tr>
<tr>
<td>Vacancy</td>
<td></td>
</tr>
<tr>
<td>concentration</td>
<td>79–80, 366</td>
</tr>
<tr>
<td>diffusivity</td>
<td>315</td>
</tr>
<tr>
<td>formation energy</td>
<td>79</td>
</tr>
<tr>
<td>motion energy</td>
<td>79</td>
</tr>
<tr>
<td>Vapor pressure</td>
<td>14–21, 145</td>
</tr>
<tr>
<td>Velocity</td>
<td></td>
</tr>
<tr>
<td>drift</td>
<td>16, 64, 241</td>
</tr>
<tr>
<td>gas particles</td>
<td>19</td>
</tr>
<tr>
<td>mean</td>
<td>25</td>
</tr>
<tr>
<td>root mean square</td>
<td>26</td>
</tr>
<tr>
<td>sound</td>
<td>19</td>
</tr>
<tr>
<td>Velocity distribution functions</td>
<td>22, 24</td>
</tr>
<tr>
<td>Vibrational frequency</td>
<td>76</td>
</tr>
<tr>
<td>Void formation</td>
<td>197, 272, 317, 346</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td>collision</td>
<td>21</td>
</tr>
<tr>
<td>constant volume process</td>
<td>337</td>
</tr>
<tr>
<td>non-constant volume process</td>
<td>337</td>
</tr>
<tr>
<td>Wear-out mechanism of electromigration</td>
<td>277</td>
</tr>
<tr>
<td>Weibull distribution</td>
<td>353, 391</td>
</tr>
<tr>
<td>Whipple’s analysis</td>
<td>202</td>
</tr>
<tr>
<td>Whisker</td>
<td></td>
</tr>
<tr>
<td>broken oxide model</td>
<td>332</td>
</tr>
<tr>
<td>stress generation</td>
<td>323</td>
</tr>
<tr>
<td>stress relaxation</td>
<td>332</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td></td>
</tr>
<tr>
<td>glancing incidence</td>
<td>176</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td></td>
</tr>
<tr>
<td>Zero creep</td>
<td>41</td>
</tr>
<tr>
<td>Zener’s growth model</td>
<td>87</td>
</tr>
</tbody>
</table>