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Vector algebra

1.1 Preliminaries

In introductory physics, we often deal with physical quantities that can be described by a

single number. The temperature of a heated body, the mass of an object, and the electric

potential of an insulated metal sphere are all examples of such scalar quantities.

Descriptions of physical phenomena are not always (indeed, rarely) that simple, however,

and often we must use multiple, but related, numbers to offer a complete description of an

effect. The next level of complexity is the introduction of vector quantities.

A vector may be described as a conceptual object having both magnitude and direction.

Graphically, vectors can be represented by an arrow:

The length of the arrow is the magnitude of the vector, and the direction of the arrow

indicates the direction of the vector.

Examples of vectors in elementary physics include displacement, velocity, force, momen-

tum, and angular momentum, though the concept can be extended to more complicated and

abstract systems. Algebraically, we will usually represent vectors by boldface characters,

i.e. F for force, v for velocity, and so on.

It is worth noting at this point that the word “vector” is used in mathematics with some-

what broader meaning. In mathematics, a vector space is defined quite generally as a set

of elements (called vectors) together with rules relating to their addition and scalar mul-

tiplication of vectors. In this sense, the set of real numbers form a vector space, as does

any ordered set of numbers, including matrices, to be discussed in Chapter 4, and complex

numbers, to be discussed in Chapter 9. For most of this chapter we reserve the term “vector”

for quantities which possess magnitude and direction in three-dimensional space, and are

independent of the specific choice of coordinate system in a manner to be discussed in
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2 Vector algebra
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Figure 1.1 The parallelogram law of vector addition. Adding B to A (the addition above the C-line)

is equivalent to adding A to B (the addition below the C-line).

Section 1.2. We briefly describe vector spaces at the end of this chapter, in Section 1.5. The

interested reader can also consult Ref. [Kre78, Sec. 2.1].

Vector addition is commutative and associative; commutativity refers to the observation

that the addition of vectors is order independent, i.e.

A + B = B + A = C. (1.1)

This can be depicted graphically by the parallelogram law of vector addition, illustrated

in Fig. 1.1. A pair of vectors are added “tip-to-tail”; that is, the second vector is added to

the first by putting its tail at the end of the tip of the first vector. The resultant vector is

found by drawing an arrow from the origin of the first vector to the tip of the second vector.

Associativity refers to the observation that the addition of multiple vectors is independent

of the way the vectors are grouped for addition, i.e.

(A + B)+ C = A + (B + C). (1.2)

This may also be demonstrated graphically if we first define the following vector additions:

E c A + B, (1.3)

D c E + C, (1.4)

F c B + C. (1.5)

The vectors and their additions are illustrated in Fig. 1.2. It can be immediately seen that

E + C = A + F. (1.6)

So far, we have introduced vectors as purely geometrical objects which are independent

of any specific coordinate system. Intuitively, this is an obvious requirement: where I am

standing in a room (my “position vector”) is independent of whether I choose to describe

it by measuring it from the rear left corner of the room or the front right corner. In other

words, the vector has a physical significance which does not change when I change my

method of describing it.
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Figure 1.2 The trapezoid rule of vector addition. It makes no difference if we first add A and B, and

then C, or first add B and C, and then A.

By choosing a coordinate system, however, we may create a representation of the vector

in terms of these coordinates. We start by considering a Cartesian coordinate system with

coordinates x, y, z which are all mutually perpendicular and form a right-handed coordinate

system.1 For a given Cartesian coordinate system, the vector A, which starts at the origin and

ends at the point with coordinates (Ax,Ay,Az), is completely described by the coordinates

of the end point.

It is highly convenient to express a vector in terms of these components by use of unit

vectors x̂, ŷ, ẑ, vectors of unit magnitude pointing in the directions of the positive coordinate

axes,

A = Axx̂ + Ayŷ + Az ẑ. (1.7)

This equation indicates that a vector equals the vector sum of its components. In three

dimensions, the position vector r which measures the distance from a chosen origin is

written as

r = xx̂ + yŷ + zẑ, (1.8)

where x, y, and z are the lengths along the different coordinate axes.

The sum of two vectors can be found by taking the sum of their individual components.

This means that the sum of two vectors A and B can be written as

A + B = (Ax + Bx)x̂ + (Ay + By)ŷ + (Az + Bz)ẑ. (1.9)

The magnitude (length) of a vector in terms of its components can be found by two successive

applications of the Pythagorean theorem. The magnitude A of the complete vector, also

written as |A|, is found to be

A =

�

A2
x + A2

y + A2
z . (1.10)

Another way to represent the vector in a particular coordinate system is by its magnitude

A and the angles α, β, γ that the vector makes with each of the positive coordinate axes.

1 If x is the outward-pointing index finger of the right hand, y is the folded-in ring finger and z is the thumb,
pointing straight up.
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4 Vector algebra

x

y

z

A

α β

γ

Ax

Ay

Az

Figure 1.3 Illustration of the vector A, its components (Ax ,Ay ,Az), and the angles α, β, γ .

These angles and their relationship to the vector and its components are illustrated in Fig. 1.3.

The quantities cosα, cosβ, and cosγ are called direction cosines. It might seem that there

is an inconsistency with this representation, since we now evidently need four numbers

(A,α,β,γ ) to describe the vector, where we needed only three (Ax,Ay,Az) before. This

seeming contradiction is resolved by the observation that α, β, and γ are not independent

quantities; they are related by the equation,

cos2 α + cos2 β + cos2 γ = 1. (1.11)

In the spherical coordinate system to be discussed in Chapter 3, we will see that we may

completely specify the position vector by its magnitude r and two angles θ and φ.

It is to be noted that we usually see vectors in physics in two distinct classes:

1. Vectors associated with the property of a single, localized object, such as the velocity of a car, or

the force of gravity acting on a moving projectile.

2. Vectors associated with the property of a nonlocalized “object” or system, such as the electric

field of a light wave, or the velocity of a fluid. In such a case, the vector quantity is a function of

position and possibly time and we may do calculus with respect to the position and time variables.

This vector quantity is usually referred to as a vector field.

Vector fields are extremely important quantities in physics and we will return to them often.

1.2 Coordinate system invariance

We have said that a vector is independent of any specific coordinate system – in other

words, that a vector is independent of how we choose to characterize it. This seems like an

obvious criterion, but there are physical quantities which have magnitude and direction but
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1.2 Coordinate system invariance 5

are not vectors; an example of this in optics is the set of principle indices of refraction of an

anisotropic crystal. Thus, to define a vector properly, we need to formulate mathematically

this concept of coordinate system invariance. Furthermore, it is not uncommon to require,

in the solution of a physical problem, the transformation from one coordinate system to

another. We therefore take some time to study the mathematics relating to the behavior of

a vector under a change of coordinates.

The simplest coordinate transformation is a change of origin, leaving the orientation of

the axes unchanged. The only vector that depends explicitly upon the origin is the position

vector r, which is a measure of the vector distance from the origin. If the new origin of a

new coordinate system, described by position vector r�, is located at the position r0 from

the old origin, the coordinates are related by the formula

r� = r 2 r0. (1.12)

Most other basic vectors depend upon the displacement vector R = r2 2r1, i.e. the change in

position, and therefore are unaffected by a change in origin. Examples include the velocity,

momentum, and force upon an object.

A less trivial example of a change of coordinate system is a change of the orientation of

coordinate axes, and its effect on a position vector r. For simplicity, we first consider the

two dimensional case. The vector r may be written in one coordinate system as r = xx̂+yŷ,

while in a second coordinate system this vector may be written as r� = x�x̂
�
+y�ŷ

�
. The (x,y)

coordinate axes are rotated to a new location to become the (x�,y�) axes, while leaving the

vector r (in particular, the location of the tip of r) fixed. The question we ask: what are

the components of the vector r in the new coordinate system, which makes an angle φ with

the old system? The relation between the two systems is illustrated in Fig. 1.4.

x

y

x'

y'

r

φ

Figure 1.4 Illustration of the position vector r and its components in the two coordinate systems.
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6 Vector algebra

By straightforward trigonometry, one can readily find that the new coordinates of the

vector (x�,y�) may be written in terms of the old coordinates as

x� = x cosφ + y sinφ, (1.13)

y� = 2x sinφ + y cosφ. (1.14)

These equations are based on the assumption that the magnitude and direction of the vector

is independent of the coordinate system, and this assumption should hold for anything we

refer to as a vector. We therefore define a vector as a quantity whose components transform

under rotations just as the position vector r does, i.e. a vector A with components Ax and

Ay in the unprimed system should have components

A�
x = Ax cosφ + Ay sinφ, (1.15)

A�
y = 2Ax sinφ + Ay cosφ (1.16)

in the primed system.

It is important to emphasize again that we are only rotating the coordinate axes, and

that the vector A does not change: (Ax,Ay) and (A�
x,A�

y) are representations of the vector,

different ways of describing the same physical property. Indeed, another way to define

a vector is that it is a quantity with magnitude and direction that is independent of the

coordinate system.

We can also interpret Eqs. (1.15) and (1.16) in an entirely different manner: if we were to

physically rotate the vector A over an angle 2φ about the origin of the coordinate system,

the new direction of the vector in the same coordinate system would be given by (A�
x,A�

y).

A rotation of the coordinate system in the direction φ is mathematically equivalent to a

rotation of the vector by an angle 2φ.

To generalize the discussion to three (or more) dimensions, it helps to modify the notation

somewhat. We write

x ³ x1, (1.17)

y ³ x2, (1.18)

and define

a11 = cosφ,

a12 = sinφ = cos(π/2 2φ) = cos(φ 2π/2),

a21 = 2sinφ = 2a12 = cos(φ +π/2),

a22 = cosφ. (1.19)

With these definitions, our formulas for a coordinate transformation become

x�
1 = a11x1 + a12x2, (1.20)

x�
2 = a21x1 + a22x2. (1.21)
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1.2 Coordinate system invariance 7

These transformations may be written in a summation format,

x�
i =

2
�

j=1

aijxj, i = 1,2, (1.22)

where x�
i is the ith component of the vector in the primed frame, xj is the jth component

of the vector in the unprimed frame, and the notation
�m

j=n indicates summation over all

terms with index j ranging from n to m. The quantity aij can be seen from Eqs. (1.19) to

be the direction cosine with the respect to the ith primed coordinate and the jth unprimed

coordinate.

What happens if we run the rotation in reverse? We can still use Eq. (1.21), but we replace

φ by 2φ and switch the primed and unprimed coordinates, i.e. the primed coordinates are

now the start of the rotation and the unprimed coordinates are now the end of the rotation.

With these changes, Eq. (1.21) becomes

x1 = a11x�
1 2 a12x�

2, (1.23)

x2 = 2a21x�
1 + a22x�

2. (1.24)

Noting that a12 = 2a21, these formulas can be rewritten in the compact summation form,

xj =

2
�

i=1

aijx
�
i, j = 1,2. (1.25)

Generalizing to N dimensions may now be done by analogy, simply introducing higher-

order direction cosines aij and an N -dimensional position vector r = (x1, . . . ,xN ), which

will satisfy the relations

x�
i =

N
�

j=1

aijxj, i = 1, . . . ,N . (1.26)

The aijs may be written in a differential form with respect to the two coordinate systems as

aij =
∂x�

i

∂xj

. (1.27)

This formula can be derived by taking partial derivatives of the transformation equations

for r, namely Eq. (1.26). The quantity aij has more components than a vector and will be

seen to be a tensor, which can be represented in matrix form; we will discuss such beasts

in Chapter 5.

The reverse rotation may also be written by analogy,

xj =

N
�

i=1

aijx
�
i, (1.28)
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8 Vector algebra

and from this expression we may also write

aij =
∂xj

∂x�
i

. (1.29)

It is evident that the coordinates of a vector must in the end be unchanged if the axes

are first rotated and then rotated back to their original positions; from this we can derive

an orthogonality condition for the coefficients aij. We begin with the transformation of the

vector V and its reverse,

Vk =

N
�

i=1

aikV �
i , (1.30)

V �
i =

N
�

j=1

aijVj. (1.31)

On substitution of the latter equation into the former, we have

Vk =

N
�

i=1

aik

£

£

N
�

j=1

aijVj

¤

§ =

N
�

j=1

#

N
�

i=1

aikaij

#

Vj. (1.32)

The left-hand side of this equation is the kth component of the vector in the unprimed frame.

The right-hand side of the equation is a weighted sum of all components of the vector in the

unprimed frame. By the use of Eqs. (1.27) and (1.29), we may write the quantity in square

brackets as
N

�

i=1

aikaij =

N
�

i=1

∂xk

∂x�
i

∂x�
i

∂xj

=
∂xk

∂xj

, (1.33)

where the final step is the result of application of the chain rule of calculus. Because the

variables xj, for j = 1, . . . ,N , are independent of one another, we readily find that

N
�

i=1

aikaij = δjk , (1.34)

where δjk is the Kronecker delta, defined as

δjk =

�

1 for j = k,

0 for j �= k.
(1.35)

We will see a lot of the Kronecker delta in the future – remember it! It is another example

of a tensor, like the rotation tensor aij.
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1.3 Vector multiplication 9

1.3 Vector multiplication

In Section 1.1, we looked at the addition of vectors, which may be considered a generaliza-

tion of the addition of ordinary numbers. One can envision that there exists a generalized

form of multiplication for vectors, as well; with three components for each vector, however,

there are a large number of possibilities for what we might call “vector multiplication”. Just

as vectors themselves are invariant under a change of coordinates, any vector multiplication

should also be invariant under a change of coordinates. It turns out that for three-dimensional

vectors there exist four possibilities, three of which we discuss here.2

1.3.1 Multiplication by a scalar

The simplest form of multiplication involving vectors is the multiplication of a vector by a

scalar. The effect of such a multiplication is the “scaling” of each component of the vector

equally by the scalar α, i.e.

αV = α(Vxx̂ + Vyŷ + Vz ẑ) = (αVx)x̂ + (αVy)ŷ + (αVz)ẑ. (1.36)

It is clear from the above that the act of multiplying by a scalar does not change the direction

of the vector, but only scales its length by the factor α; we may formally write |αV| = |α||V|.

The result of the multiplication is also a vector, as it is clear that this product is invariant

under a rotation of the coordinate axes, which does not affect the vector length.

It is to be noted that we may also consider scalar multiplication “backwards”, i.e. that it

represents the multiplication of a scalar by a vector, with the end result being a vector. This

interpretation will be employed in Chapter 2 to help categorize the different types of vector

differentiation.

1.3.2 Scalar or dot product

The scalar product (or “dot product”) between two vectors is represented by a dot and is

defined as

A · B c ABcosθ , (1.37)

where A and B are the magnitudes of vectors A and B, respectively, and θ is the angle

between the two vectors.

The rotational invariance of this quantity is almost obvious from its definition, for we

know that the magnitudes of vectors and the angles between any two vectors are all

unchanged under rotations. We will confirm this more rigorously in a moment.

In terms of components in a particular Cartesian coordinate system, the scalar product is

given by3

A · B =
�

i

AiBi =
�

i

BiAi = B · A. (1.38)

2 A discussion of the fourth, the direct product, will be deferred until Section 5.6.
3 From now on, we no longer write the upper and lower ranges of the summations.
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10 Vector algebra

We can use this representation of the scalar product to rigorously prove that it is invariant

under rotations. We start with the scalar product in the primed coordinate system, and sub-

stitute into it the representation of the primed vectors in terms of the unprimed coordinates,

Eq. (1.31),

�

i

A�
iB

�
i =

�

i

£

£

�

j

aijAj

�

k

aikBk

¤

§ =
�

j

�

k

#

�

i

aijaik

#

AjBk . (1.39)

The expression in the last brackets is simply the orthogonality relation between the direction

cosines, Eq. (1.34), and may be set to δjk . We thus have

�

i

A�
iB

�
i =

�

i

AiBi (1.40)

and we have proven that the scalar product is invariant under rotations.

The dot product may be used to demonstrate another familiar geometrical formula, the

law of cosines. Defining

C = A + B, (1.41)

it follows from the parallelogram law of vector addition that A, B, and C form the sides of

a triangle. If we take the dot product of C with itself,

C · C = (A + B) · (A + B) = A · A + B · B + 2A · B. (1.42)

The dot product of a vector with itself is simply the squared magnitude of the vector, and

the dot product of A and B is defined by Eq. (1.37). We thus arrive at

C2 = A2 + B2 + 2ABcosθ , (1.43)

the law of cosines.

1.3.3 Vector or cross product

The third form of rotationally invariant product involving vectors is the vector product or

“cross product”. Just as the scalar product is named such because the result of the product

is a scalar, the result of the vector product is another vector. It is represented by a cross

between vectors,

C = A × B. (1.44)

In evident contrast with the scalar product, the magnitude of the vector product is defined

as

C = AB sin θ , (1.45)

where θ is again the angle between the vectors A and B. From this definition, it is to be

noted that the magnitude of C is the area of the parallelogram formed by A and B, and that
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