This book deals with the elastic stability of solids and structures, for which Warner Koiter was the world’s leading expert of his time. It begins with fundamental aspects of stability, relating the basic notions of dynamic stability to more traditional quasi-static approaches. The book is concerned not only with buckling, or linear instability, but most importantly with nonlinear postbuckling behavior and imperfection sensitivity. After laying out the general theory, Koiter applies the theory to a number of applications, with a chapter devoted to each. These include a variety of beam, plate, and shell structural problems and some basic continuum elasticity problems. Koiter’s classic results on the nonlinear buckling and imperfection sensitivity of cylindrical and spherical shells are included. The treatments of both the fundamental aspects and the applications are completely self-contained. This book was recorded as a detailed set of notes by Arnold van der Heijden from W. T. Koiter’s last set of lectures on stability theory at TU Delft.

Arnold M. A. van der Heijden has his own consultancy, HESTOCON Consultancy B.V. He received his master’s and Ph.D. degrees, with honors, in mechanical engineering and applied mechanics under Professor Koiter. He has been a technical and scientific staff member in the Applied Mechanics Laboratory at Delft University of Technology, an honorary research Fellow at Harvard University, a professor at Eindhoven Technical University, a board member of the Department of Applied Mechanics of the Royal Dutch Institute for Engineers, and co-editor (with J. F. Besseling) of the Koiter symposium book *Trends in Solid Mechanics*. Dr. van der Heijden has worked on staff and consulted for many corporations, including Royal Dutch Shell (Pernis and The Hague), ABB Lummus Global, and as a project leader of ATEX at General Electric Advanced Materials, SABIC, and Essent. He has done gas explosion calculations for offshore platforms, including structural analysis. He is currently working on improvements in safety management for ProRail.
W. T. Koiter’s Elastic Stability of Solids and Structures

Edited by
Arnold M. A. van der Heijden
Technische Universiteit Delft
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013–2473, USA
www.cambridge.org
Information on this title: www.cambridge.org/9780521515283

© Arnold van der Heijden 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data
Heijden, Arnold van der.
TA653.H44 2008
620.1'1232 – dc22 2008017910

ISBN 978-0-521-51528-3 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.
Contents

Preface vii

1. Stability .. 1
 1.1 Discrete systems 1

2. Continuous Elastic Systems 7
 2.1 Thermodynamic background 7
 2.2 Theorems on stability and instability 11
 2.3 The stability limit 18
 2.4 Equilibrium states for loads in the neighborhood of the buckling load 27
 2.5 The influence of imperfections 41
 2.6 On the determination of the energy functional for an elastic body 47

3. Applications 55
 3.1 The incompressible bar (the problem of the elastica) 55
 3.2 Bar with variable cross section and variable load distribution 59
 3.3 The elastically supported beam 61
 3.4 Simple two-bar frame 67
 3.5 Simple two-bar frame loaded symmetrically 72
 3.6 Bending and torsion of thin-walled cross sections under compression 78
 3.7 Infinite plate between flat smooth stamps 84
 3.8 Helical spring with a small pitch 101
 3.9 Torsion of a shaft 110
 3.10 Torsion of a shaft with a Cardan (Hooke’s) joint 119
 3.11 Lateral buckling of a beam loaded in bending 126
 3.12 Buckling of plates loaded in their plane 137
 3.13 Post-buckling behavior of plates loaded in their plane 158
 3.14 The “von Kármán-Föppl Equations” 166
Contents

3.15 Buckling and post-buckling behavior of shells using shallow shell theory 169
3.16 Buckling behavior of a spherical shell under uniform external pressure using the general theory of shells 182
3.17 Buckling of circular cylindrical shells 201
3.18 The influence of more-or-less localized short-wave imperfections on the buckling of circular cylindrical shells under axial compression 221

Selected Publications of W. T. Koiter on Elastic Stability Theory 227
Index 229
These lecture notes were made after Professor Koiter’s last official course at Delft’s University of Technology, in the academic year 1978–79. Although these notes were prepared in close collaboration with Professor Koiter, they are written in the author’s style. The author is therefore fully responsible for possible errors.

This course covers the entire field of elastic stability, although recent developments in the field of stiffened plates and shells are not included. Hopefully, these lecture notes reflect some of the atmosphere of Dr. Koiter’s unique lectures.

Delft, June 10, 2008

A. M. A. v. d. Heijden