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Stability

1.1 Discrete systems

Consider a system with a finite number of degrees of freedom. The position of this
system is represented by a position vector q(q1, q2 . . . qn), where qi (i ∈ 1 . . . n) are
n independent coordinates. It is assumed that the system is holonomic, i.e., no rela-
tions exist between the derivatives of the coordinates, and scleronomic, i.e., the fac-
tor time is not explicitly needed in the description of the system.† Let q̇i be the gen-
eralized velocities. The kinetic energy T is then a homogeneous quadratic function
of the generalized velocities, and hence T can be written as

T = 1
2

aij (q)q̇iq̇j . (1.1.1)

When the system is non-sclerononic, terms linear in the velocities and a term inde-
pendent of q̇i must be added. The coefficient aij (q) is called the inertia matrix. The
forces acting upon the system can be expressed by a generalized force vector Q
defined by

Qiδqi = v.w., (1.1.2)

where the right-hand side stands for the virtual work of all the forces acting upon
the system. In general, this expression is not a total differential. However, for an
important class of problems, it is. Systems for which 1.1.2) is a total differential are
called conservative systems. In that case we have

Qiδqi = −δP (q) , (1.1.3)

where δP (q) is a total differential and P (q) is called the potential energy. In the fol-
lowing, we mainly restrict our attention to conservative systems because for elastic
systems, conservative forces play an important role.

Introducing a kinetic potential L defined by

L = T − P, (1.1.4)

† This implies that dq = q, k dqk.
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2 Stability

the Lagrangian equations for a conservative system are

d
dt

∂L
∂q̇i

− ∂L
∂q̇i

= 0, (i ∈ 1, . . . , n) . (1.1.5)

Using the expression (1.1.1), we may rewrite this equation to yield

d
dt

(aij q̇i) − 1
2

ahk,i q̇hq̇k + P,i = 0, (1.1.6)

where

ahk,i = ∂ahk (q)
∂qi

, P,i = ∂P (q)
∂qi

However, it often happens that non-conservative forces are present (e.g., damping
forces). It is then advantageous to take these into account separately as follows:

Qiδqi = δP (q) + Q∗
i δqi, (1.1.7)

where Q∗ is the vector of non-conservative forces. The equations of motion then
read

d
dt

∂L
∂q̇i

− ∂L
∂q̇i

= Q∗
i , (i ∈ 1 · · · n) . (1.1.8)

These are n second-order ordinary differential equations.
Let us now consider the stability of discrete systems. For a system to be in equi-

librium, the velocities (and hence the kinetic energy) have to vanish. This implies
that for a conservative system, we have

P,i = 0. (1.1.9)

In words: The potential energy has a stationary value.

By stability we mean that a small disturbance from the state of equilibrium does
not cause large deviations from this state of equilibrium. A disturbance from the
state of equilibrium implies that the velocities are nonzero or that the position dif-
fers from the equilibrium position. We can always choose our coordinate system
such that the equilibrium position is given by q = 0. Furthermore, we can always
choose the potential energy in such a way that it vanishes in the equilibrium posi-
tion. Doing so, we may write

P = 1
2

P,ij (0) qiqj + · · · . (1.1.10)

To be able to give a more exact definition of stability, we need a measure to denote
the deviation from the state of equilibrium. Remembering that in equilibrium we
have q = q̇ = 0, a number ρ (q, q̇) is introduced with the following properties:

1) ρ (q, q̇) ≤ 0 for q �= 0 or q̇ �= 0,

2) ρ (q1, q2, q̇1 + q̇2) ≤ ρ (q1, q̇1) ρ (q2, q̇2)

(triangle inequality), (1.1.11)

3) ρ (αq, αq̇) = |α| ρ (q, q̇) α ∈ R.
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1.1 Discrete systems 3

We are now in a position to define the following stability criterion.
An equilibrium position is stable if and only if for each positive number ε there

exists a positive number δ(ε) such that for all disturbances of the equilibrium at the
time t > 0, with ρ [q(0), q̇(0)] < δ, the motion for t > 0 satisfies ρ [q(t), q̇(t)] < ε.

Notice that the statement about stability depends on the measure that is used.
Different measures yield different criteria for stability. Notice further that different
measures may be used for t = 0 and t > 0. This freedom is of great importance for
applications. For example, suitable choices for ρ are

ρ =
[

n∑
i=1

(qi)2 +
n∑

i=1

(q̇i)2

]1/2

,

ρ = max
∣∣qi

∣∣ + max
∣∣q̇i

∣∣ .
For a conservative system, T + P = constant. This well-known result can easily be
derived from Lagrange’s equations for a conservative, holonomic, and scleronomic
system. Multiplying the equations by q̇i, we obtain

q̇i d
dt

∂L
∂q̇i

− q̇i ∂L
∂qi

= 0

or

d
dt

(
q̇i ∂L

∂q̇i

)
− q̈i ∂L

∂q̇i
− q̇i ∂L

∂qi
= 0

or

d
dt

(
q̇i ∂L

∂q̇i

)
− d

dt
L = 0.

Using Euler’s theorem for homogeneous quadratic functions, we readily obtain

d
dt

(2T) − d
dt

(T − P) = 0,

from which follows

T + P = E, (1.1.12)

where E = T(t = 0) + P(t = 0). This equation enables us to make the following
statement about stability.

Theorem. The equilibrium is stable provided the potential energy is positive-definite.

To prove this theorem, we introduce the following norms:

‖q‖2 =
n∑

i=1

(qi)2

‖q̇‖2 =
n∑

i=1

(q̇i)2.
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4 Stability

Let d(c) denote the minimum of P(q) on the hypersphere ‖ q ‖ = c . P(q) is positive-
definite when d(c) is a monotonically increasing function of c on the sphere δ ≤ c <

R.

Proof. T + P = constant = E, T is positive or zero, and P is positive-definite.
Restrict the initial disturbance so that

‖ q (0) ‖< c1 and E < d (c1) .

This means that T (t = 0) < d (c1). Because T + P < d (c1) and P is positive-definite,
it follows that T < d (c1) for all t. On the other hand, because T is positive or
zero, it follows that P < d (c1) for all t. A similar argument holds for a disturbance
‖ q̇(0) ‖ < c 2. Hence, we may choose an arbitrary (small) disturbance and the dis-
placements and velocities will always remain within definable bounds.

The converse of this theorem has not yet been proven in all generality. To see
some of the difficulties that are encountered, we consider the following example
(one degree of freedom):

P(q) = e−q−2
cos q−2.

For q = 0, all the derivatives vanish. However, in the immediate vicinity of the ori-
gin there are always negative values of P. In spite of this, the system is stable for
sufficiently small disturbances.

Actual physical systems are never exactly conservative, i.e., there is always
some dissipation. The approximation by a conservative system is often a very good
approximation. In the presence of damping forces, we need the Lagrangian equa-
tions with an additional term for the non-conservative forces. Multiplying by q̇i,

q̇i d
dt

∂L
∂q̇i

− q̇i ∂L
∂qi

= Q∗
i q̇i, (i ∈ 1, . . . , n)

from which follows

d
dt

(T + P) = Q∗
i q̇i ≡ −D (q, q̇) . (1.1.13)

Damping implies that the dissipation function D > 0 for q̇ �= 0. We now make the
following assumptions:

1) The damping forces have the property that Q∗
i → 0 for ‖q̇ ‖ → 0.

2) D(q, q̇i) > 0 for ‖q̇‖ �= 0.

3) P (q) does not possess stationary values for ‖ q̇ ‖ < cexcept at q = 0.

Systems satisfying these conditions are called pseudo-conservative. Notice that
because of restriction (1), dry friction forces are excluded.

Theorem. In the presence of (positive) damping forces, a system with an indefinite
potential energy is unstable.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51528-3 - W. T. Koiter’s Elastic Stability of Solids and Structures
Edited by Arnold M. A. van der Heijden
Excerpt
More information

http://www.cambridge.org/9780521515283
http://www.cambridge.org
http://www.cambridge.org


1.1 Discrete systems 5

Proof. If P is indefinite, consider a disturbance of the equilibrium configuration with
zero velocity and negative potential energy. The initial total energy is thus negative
and, as this configuration cannot be in equilibrium, motion must result, as a result
of which energy is dissipated. The total energy must decrease, so the system cannot
stay in the vicinity of the origin, which means that the equilibrium configuration is
unstable.

The great advantage of this stability theorem is that it does not involve the
kinetic energy, and hence the inertia matrix aij (q). For a conservative or pseudo-
conservative system, the stability criterion only depends on the potential energy
(a quasi-static criterion). In general, the stability problem is a dynamic problem,
and the kinetic energy plays an essential role. An example of such a problem is the
behavior of the wings of an airplane in an airflow. In this case, the forces do not
depend on only the geometry but also on the velocities.

For static loads, it is often sufficient to restrict oneself to conservative loads (e.g.,
deadweight loads). A more severe restriction for continuous systems is that we must
restrict ourselves to elastic systems, i.e., to systems where there is a potential for the
internal energy. Such a potential does not exist when plasticity occurs.

Let us now have a closer look at the stability problem. As mentioned previ-
ously, the stability criterion is fully determined by the potential energy P(q). In the
equilibrium position, we have chosen P (0) = 0 and q = 0 so that we may write

P (q) = 1
2

P,ij (0) qiqj + · · · ≡ 1
2

cij qiqj + · · · , (1.1.14)

where cij denotes the stiffness matrix in the equilibrium position. It follows that
when the stiffness matrix is positive-definite, P (q) is positive-definite and the system
is stable. If cij is indefinite (or negative-definite) then the system is unstable. If cij

is semi-definite-positive (i.e., non-negative and zero for at least a deflection in one
direction), then we must consider higher-order terms in the expansion for P. This
case is called a critical case of neutral equilibrium. We shall consider this case in
more detail.

It is convenient to transform the quadratic form (1.1.14) to a sum of quadratic
terms. If the form is positive-definite, then the coefficients in the transformed form
are all positive. Applying this transform to (1.1.14) and denoting the transformed
coordinates again by qi, we may write

P (q) = 1
2

n∑
i=1

ci(qi)2 + · · · + () (q1)3 + · · · . (1.1.15)

Further, we order the coefficients ci such that

c1 ≤ c2 ≤ c3 ≤ · · · ≤ cn.

We now consider the case c1 = 0, c2 > 0. Taking all qi = 0 (i > 1), the dominant
term will be (q1)3. This term can attain negative values, and hence the system will be
unstable. A necessary condition for stability is that the coefficient of (q1)3 is equal
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6 Stability

x

x = y2

x = 2y2

f x, y) < 0(

y

Figure 1.1.1

to zero. A further necessary condition for stability is that the coefficient of (q1)4 is
positive. However, this condition is insufficient, as will be shown in the following
example. Consider the function

P = f (x, y) = (x − y2)(x − 2y2) = x2 − 3xy2 + 2y4. (1.1.16)

The graphs of the functions x − y2 = 0 and x − 2y2 = 0 are given in Fig. 1.1.1.
The function f (x, y) in an arbitrary small neighborhood of the origin takes on

both positive and negative values. In this case, the quadratic form in y vanishes at
the origin, and there is no cubic term, but the coefficient in the quartic term is posi-
tive. Hence, the necessary conditions for stability are satisfied. However, this system
is unstable because in an arbitrarily small neighborhood of the origin, P takes on
negative values.

The reason that the conditions mentioned here are not sufficient is that we have
restricted our investigation to straight lines through the origin (see Fig. 1.1.1). Fol-
lowing these straight lines, we always find only positive values in a sufficiently small
neighborhood of the origin. However, if we follow curved lines through the origin
(see the dashed lines), we easily find negative values. Once we have recognized the
reason why the conditions imposed are insufficient, it is easy to find a remedy. To
this end, we consider a line y = constant in the neighborhood of the origin, and we
minimize f (x, y) with respect to x, i.e.,

Min
y=y1

f (x, y) = x2 − 3xy2
1 + 2y4

1. (1.1.17)

This yields 2x − 3y2
1 = 0, and hence x = 3/2 y2

1. Substitution of this value into f (x, y)
yields min f (x, y) = −1/4 y4

1, which means that the function is indefinite.
In general, the function P is minimized with respect to qi (i > 1) for fixed q1.

When the coefficient of (q1)4 is positive-definite, the system is stable.
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2

Continuous Elastic Systems

2.1 Thermodynamic background

Consider a body that is in a state of equilibrium under conservative loads. Our aim
is to investigate this equilibrium state.

For an elastic body, the internal energy per unit mass may be represented by
U(s, γ), where s denotes the specific entropy and γ is the deformation tensor. Let
xi (i = 1, 2, 3) be the components of the position vector x, which describe the posi-
tion of a material point in the “fundamental state” I, which is to be investigated. Let
u(x) be the displacement vector from the fundamental state (u is a small but finite
displacement). The corresponding position in the “adjacent state” II is then x + u.
The (additional) deformation tensor is now defined by

γij = 1
2

(ui,j + uj ,i) + 1
2

uh,iuh,j . (2.1.1)

The fact that the body has undergone deformations to arrive in the fundamental
state is unimportant because the state I is kept fixed.

The temperature T is now defined by

T = ∂U
∂s

(2.1.2)

(γ is kept constant).
From (2.1.2) we obtain

∂T
∂s

= ∂2U
∂s2

.

The specific heat of the material is now defined by

T
∂s
∂T

= Cγ, (2.1.3)

where Cγ > 0 for a thermodynamically stable material. As ∂2U/∂s2 is positive (non-
zero) we may solve (2.1.2) for s, which yields s = s(T, γ).

We now introduce the function F(T, γ), defined by

F(T, γ) = U − Ts. (2.1.4)

7
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8 Continuous Elastic Systems

F (T, γ) is called the free energy.
Writing (2.1.4) as a total differential, we find (for fixed γ)

∂F
∂T

δT = ∂U
∂s

δs − Tδs − sδT. (2.1.5)

Using (2.1.2) we find

s = −∂F
∂T

. (2.1.6)

Let us denote the temperature in the fundamental state (which by virtue of the
equilibrium state is equal to the temperature of its surroundings) by TI. A distur-
bance of the equilibrium state will cause a heat flux in the body. In the following,
we will assume that the temperature of the surrounding medium is constant (TI).
Denoting the heat flux by q, the heat flux per unit time through a closed surface is
given by

∫
A q · n dA, where n denotes the unit normal vector on the surface, positive

in the outward direction. According to the second law of thermodynamics,† vheat
will flow out of the body when its surface temperature is higher than that of the
surrounding medium, i.e.,

(T − TI)q · n ≥ 0 (on the surface). (2.1.7)

The heat flux will cause an entropy flux. The entropy flux vector h is given by

h = 1
T

q (per unit time and per unit area). (2.1.8)

For an arbitrary part of the body, the entropy balance is given by∫
V

ρṡ dV =
∫
A

h · n dA, (2.1.9)

where ρ is the specific mass. This equation only holds in the absence of irreversible
processes in the body. When the state of the body also depends on the deformation
rates, irreversible processes will occur, which implies entropy production. In that
case, the entropy balance reads∫

V

ρṡ dV =
∫
A

h · n dA +
∫
V

ρσ dV, σ ≥ 0, (2.1.10)

where σ denotes the entropy production per unit time and mass. This is the more
general formulation of the second law of thermodynamics (Clausius-Duhem). The
first law of thermodynamics states that the total amount of heat that flows into a
body is transformed into internal energy.

Let PL [u (x (t))] be the potential energy of the external loads and let

K [u̇ (x (t))] = 1
2

∫
V

ρ u̇ · u̇ dV

† This is an early formulation by Clausius (1854).

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-51528-3 - W. T. Koiter’s Elastic Stability of Solids and Structures
Edited by Arnold M. A. van der Heijden
Excerpt
More information

http://www.cambridge.org/9780521515283
http://www.cambridge.org
http://www.cambridge.org


2.1 Thermodynamic background 9

be the kinetic energy. The total energy balance is then given by

d
dt

⎧⎨
⎩

∫
V

ρU (s, γ) dV + K [u̇ (x (t))] + PL [u (x (t))]

⎫⎬
⎭

= − ∫
A

q (x (t)) · n dA, (1st law)

(2.1.11)

where we have a negative sign on the right-hand side of this equation because the
heat flux is regarded as positive in the outward direction.

To draw conclusions from the first and the second laws, we subtract (2.1.11)
from (2.1.10) multiplied by TI. This yields

d
dt

⎧⎨
⎩

∫
V

ρ [U (s, γ) − TIs] dV + K [u̇ (x (t))] + PL [u (x (t))]

⎫⎬
⎭

(2.1.12)

=
∫
V

(
TI

T
− 1

)
q · n dA − TI

∫
V

ρσ dV ≤ 0

(Duhem, 1911).
Here we have made use of the relation∫

V

ρṡ dV = d
dt

∫
V

ρs dV (2.1.13)

The first term on the right-hand side of (2.1.12) is negative because the heat flux is
in the outward direction when T > TI, and the second term is negative because the
entropy production is always positive. The integral on the left-hand side of (2.1.12)
may be expressed in terms of the free energy. Using the relation

U (s, γ) − TIs = U (s, γ) − Ts + (T − TI) s = F (T, γ) + (T − TI)
∂F
∂T

, (2.1.14)

we obtain

d
dt

⎧⎨
⎩

∫
V

ρ

[
F (T, γ) + (TI − T)

∂F
∂T

]
dV + PL + K

⎫⎬
⎭ ≤ 0. (2.1.15)

Duhem (1911) already discussed the stability of a system on the basis of this equa-
tion and came to the conclusion that a system is stable when the form between the
braces is positive-definite. In this form, K is a positive-definite function. However,
the terms between the square brackets depend on the deformation tensor and the
temperature, whereas PL depends on the displacement field. The problem is to sep-
arate the influence of the temperature and the displacement field. A straightforward
expansion

F (T, γ) = F (TI, γ) +
(

∂F
∂T

)
TI

(T − TI) + 1
2

(
∂2F
∂T2

)
TI

(T − TI)
2 + · · ·
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10 Continuous Elastic Systems

does not solve the problem. Following Ericksen (1965), we may write the Taylor
expansion of the free energy at constant deformation γ in the form

F (TI, γ) = F (T, γ) +
(

∂F
∂T

)
T

(TI − T) + 1
2

(
∂2F
∂T2

)
∗

(TI − T)2
, (2.1.16)

where the first derivative is evaluated at the deformation γ and temperature T, and
the second (starred) derivative at the deformation γ and an intermediate tempera-
ture T∗ = T + θ (TI − T), where 0 < θ < 1. Using (2.1.16) we may rewrite the term
between the square brackets in (2.1.15) as follows:

F (T, γ) + (TI − T)
∂F
∂T

= F (TI, γ) − 1
2

(
∂2F
∂T2

)
∗

(TI − T)2

= F (TI, γ) + 1
2

(cγ

T

)
∗

(TI − T)2
,

(2.1.17)

where we have used the relation

cγ ≡ T
∂s
∂T

= T
∂2F
∂T2

.

The first term on the right-hand side of (2.1.17) depends only on the displacement
field. The second term is positive-definite. The energy balance may now be written
in the form

d
dt

⎧⎨
⎩

∫
V

ρF (TI, γ) dV + PL [u (x (t))] + K [u̇ (x (t))]+1
2

∫
V

ρ
(cγ

T

)
∗

(TI −T)2 dV

⎫⎬
⎭≤0.

(2.1.18)

The last two terms in the left-hand member are positive-definite, and the remaining
terms depend only on the displacement field. Our energy balance is not affected
when we subtract from the expression between the braces a time-independent
quantity, ∫

V

ρF (TI, 0) dV.

Further, we introduce the notation

W (γ) ≡ ρ [F (TI, γ) − F (TI, 0)] , (2.1.19)

where W (γ) is the (additional) stored elastic energy in the isothermal (additional)
deformation γ at constant temperature TI, from the fundamental state I to the cur-
rent state. The potential energy functional P is now defined by

P [u (x (t))] =
∫
V

W (γ) dV + PL [u (x (t))] . (2.1.20)

In words: The potential energy is equal to the sum of the increase of the elastic
energy for isothermal deformations and the potential energy of the external loads.
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