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Hypercyclic and supercyclic operators

Introduction

The aim of this first chapter is twofold: to give a reasonably short, yet significant
and hopefully appetizing, sample of the type of questions with which we will be
concerned and also to introduce some definitions and prove some basic facts that
will be used throughout the whole book.

Let X be a topological vector space over K = R or C. We denote by L(X) the set
of all continuous linear operators on X . If T ∈ L(X), the T -orbit of a vector x ∈ X

is the set
O(x, T ) := {Tn(x); n ∈ N}.

The operator T is said to be hypercyclic if there is some vector x ∈ X such
that O(x, T ) is dense in X . Such a vector x is said to be hypercyclic for T (or
T -hypercyclic), and the set of all hypercyclic vectors for T is denoted by HC(T ).
Similarly, T is said to be supercyclic if there exists a vector x ∈ X whose projective
orbit

K · O(x, T ) := {λTn(x); n ∈ N, λ ∈ K}

is dense in X; the set of all supercyclic vectors for T is denoted by SC(T ). Finally,
we recall that T is said to be cyclic if there exists x ∈ X such that

K[T ]x := span O(x, T ) = {P (T )x; P polynomial}

is dense in X .
Of course, these notions make sense only if the space X is separable. Moreover,

hypercyclicity turns out to be a purely infinite-dimensional phenomenon ([206]):

PROPOSITION 1.1 There are no hypercyclic operators on a finite-dimensional
space X �= {0}.

PROOF Suppose on the contrary that T is a hypercyclic operator on KN , N ≥ 1.
Pick x ∈ HC(T ) and observe that (x, T (x), . . . , TN−1(x)) is a linearly independent
family and hence is a basis of KN . Indeed, otherwise the linear span of O(x, T )
would have dimension less than N and hence could not be dense in KN . For any
α ∈ R+, one can find a sequence of integers (nk) such that Tnk(x) → αx. Then
Tnk(T ix) = T i(Tnkx) → αT ix for each i < N , and hence Tnk(z) → αz for
any z ∈ KN . It follows that det(Tnk) → αN , i.e. det(T )nk → αN . Thus, putting
a := |det(T )|, we see that the set {an; n ∈ N} is dense in R+. This is clearly
impossible. �

The most general setting for linear dynamics is that of an arbitrary (separable)
topological vector space X . However, we will usually assume that X is an F -space,
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2 Hypercyclic and supercyclic operators

i.e. a complete and metrizable topological vector space. Then X has a translation-
invariant compatible metric (see [210]) and (X, d) is complete for any such metric
d. In fact, in most cases X will be a Fréchet space, i.e. a locally convex F -space.
Equivalently, a Fréchet space is a complete topological vector space whose topology
is generated by a countable family of seminorms.

An attractive feature of F -spaces is that one can make use of the Baire category
theorem. This will be very important for us. Incidentally, we note that the Banach–
Steinhaus theorem and Banach’s isomorphism theorem are valid in F -spaces, and
if local convexity is added then one can also use the Hahn–Banach theorem and its
consequences. If the reader feels uncomfortable with F -spaces and Fréchet spaces,
he or she may safely assume that the underlying space X is a Banach space, keeping
in mind that several natural examples live outside this context.

The chapter is organized as follows. We start by explaining how one can show
that a given operator is hypercyclic or supercyclic. In particular, we prove the so-
called Hypercyclicity Criterion, and the analogous Supercyclicity Criterion. Then we
show that hypercyclicity and supercyclicity both entail certain spectral restrictions
on the operator and its adjoint. Next, we discuss the “largeness” and the topological
properties of the set of all hypercyclic vectors for a given operator T . Finally, we treat
in some detail several specific examples: weighted shifts on �p spaces, composition
operators on the Hardy space H2(D), and operators commuting with translations on
the space of entire functions H(C).

1.1 How to prove that an operator is hypercyclic

Our first characterization of hypercyclicity is a direct application of the Baire cat-
egory theorem. This result was proved by G. D. Birkhoff in [53], and it is often
referred to as Birkhoff’s transitivity theorem.

THEOREM 1.2 (BIRKHOFF’S TRANSITIVITY THEOREM) Let X be a separable
F -space and let T ∈ L(X). The following are equivalent:

(i) T is hypercyclic;
(ii) T is topologically transitive; that is, for each pair of non-empty open sets

(U, V ) ⊂ X there exists n ∈ N such that Tn(U) ∩ V �= ∅.

In that case, HC(T ) is a dense Gδ subset of X .

PROOF First, observe that if x is a hypercyclic vector for T then O(x, T ) ⊂
HC(T ). Indeed, since X has no isolated points, any dense set A ⊂ X remains
dense after the removal of a finite number of points. Applying this to A := O(x, T ),
and since O(T p(x), T ) = O(x, T )\{x, T (x), . . . , T p−1(x)}, we see that T p(x) ∈
HC(T ) for every positive integer p. Thus HC(T ) is either empty or dense in X .
From this, it is clear that (i) =⇒ (ii). Indeed, if (i) holds and the open sets U, V are
given, we can pick x ∈ U ∩ HC(T ) and then n ∈ N such that Tn(x) ∈ V .
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1.1 How to prove that an operator is hypercyclic 3

To prove the converse, we note that since the space X is metrizable and separable,
it is second-countable, i.e. it admits a countable basis of open sets. Let (Vj)j∈N be
such a basis. A vector x ∈ X is hypercyclic for T iff its T -orbit visits each open set
Vj , that is, iff for any j ∈ N there exists an integer n ≥ 0 such that Tn(x) ∈ Vj .
Thus one can describe HC(T ) as follows:

HC(T ) =
⋂
j∈N

⋃
n≥0

T−n(Vj).

This shows in particular that HC(T ) is a Gδ set. Moreover, it follows from
the Baire category theorem that HC(T ) is dense in X iff each open set Wj :=⋃

n≥0 T−n(Vj) is dense; in other words, iff for each non-empty open set U ⊂ X

and any j ∈ N one can find n such that

U ∩ T−n(Vj) �= ∅ or, equivalently, Tn(U) ∩ Vj �= ∅.

Since (Vj) is a basis for the topology of X , this is equivalent to the topological
transitivity of T . �

REMARK The implication (hypercyclic) =⇒ (topologically transitive) does not
require the space X to be metrizable or Baire: it holds for an arbitrary topological
vector space X . Indeed, the only thing we use is that HC(T ) is dense in X whenever
it is non-empty, since X has no isolated points. Moreover, what is really needed for
the converse implication (topologically transitive) =⇒ (hypercyclic) is that X is a
Baire space with a countable basis of open sets. We also point out that Theorem 1.2
has nothing to do with linearity, since the definitions of hypercyclicity and topologi-
cal transitivity do not require any linear structure. Accordingly, Theorem 1.2 holds as
stated for an arbitrary continuous map T : X → X acting on some second-countable
Baire space X without isolated points.

When the operator T is invertible, it is readily seen that T is topologically
transitive iff T−1 is. Thus, we can state

COROLLARY 1.3 Let X be a separable F -space, and let T ∈ L(X). Assume that
T is invertible. Then T is hypercyclic if and only if T−1 is hypercyclic.

It is worth noting that T and T−1 do not necessarily share the same hypercyclic
vectors; see Exercise 1.11.

We illustrate Theorem 1.2 with the following historic example, also due to
Birkhoff [54].

EXAMPLE 1.4 (G. D. BIRKHOFF, 1929) Let H(C) be the space of all entire
functions on C endowed with the topology of uniform convergence on compact
sets. For any non-zero complex number a, let Ta : H(C) → H(C) be the
translation operator defined by Ta(f)(z) = f(z + a). Then Ta is hypercyclic
on H(C).
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4 Hypercyclic and supercyclic operators

PROOF The space H(C) is a separable Fréchet space, so it is enough to show that
Ta is topologically transitive. If u ∈ H(C) and E ⊂ C is compact, we set

‖u‖E := sup{|u(z)|; z ∈ E}.

Let U, V be two non-empty open subsets of H(C). There exist ε > 0, two closed
disks K,L ⊂ C and two functions f, g ∈ H(C) such that

U ⊃
{
h ∈ H(C); ‖h − f‖K < ε

}
,

V ⊃
{
h ∈ H(C); ‖h − g‖L < ε

}
.

Let n be any positive integer such that K∩(L+an) = ∅. Since C\(K∪(L+an))
is connected, one can find h ∈ H(C) such that

‖h − f‖K < ε and ‖h − g(· − na)‖L+an < ε;

this follows from Runge’s approximation theorem (see e.g. [209] or Appendix A).
Thus h ∈ U and Tn

a (h) ∈ V , which shows that Ta is topologically transitive. �

Topologically transitive maps are far from being exotic objects. For example, the
map x �→ 4x(1 − x) is transitive on the interval [0, 1] and the map λ �→ λ2 is
transitive on the circle T (see e.g. R. L. Devaney’s classical book [94]). However, in
a topological setting one often needs a specific argument to show that a given map is
transitive.

Nevertheless, in a linear setting an extremely useful general criterion for hyper-
cyclicity does exist. This criterion was isolated by C. Kitai in a restricted form [158]
and then by R. Gethner and J. H. Shapiro in a form close to that given below, [119].
The version we use appears in the Ph.D. thesis of J. Bès [45].

DEFINITION 1.5 Let X be a topological vector space, and let T ∈ L(X). We say
that T satisfies the Hypercyclicity Criterion if there exist an increasing sequence of
integers (nk), two dense sets D1,D2 ⊂ X and a sequence of maps Snk

: D2 → X

such that:

(1) Tnk(x) → 0 for any x ∈ D1;

(2) Snk
(y) → 0 for any y ∈ D2;

(3) TnkSnk
(y) → y for each y ∈ D2.

We will sometimes say that T satisfies the Hypercyclicity Criterion with respect
to the sequence (nk). When it is possible to take nk = k and D1 = D2, it is usually
said that T satisfies Kitai’s Criterion. We point out that in the above definition, the
maps Snk

are not assumed to be linear or continuous.

THEOREM 1.6 Let T ∈ L(X), where X is a separable F -space. Assume that T

satisfies the Hypercyclicity Criterion. Then T is hypercyclic.
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1.1 How to prove that an operator is hypercyclic 5

FIRST PROOF We show that T is topologically transitive. Let U, V be two non-
empty open subsets of X and pick x ∈ D1 ∩ U , y ∈ D2 ∩ V . Then x + Snk

(y) →
x ∈ U as k → ∞ whereas Tnk(x + Snk

(y)) = Tnk(x) + TnkSnk
(y) → y ∈ V .

Thus, Tnk(U) ∩ V �= ∅ if k is large enough. �

SECOND PROOF This second proof consists in replacing the Baire category theo-
rem by a suitable series; this was the original idea of Kitai. We may assume that the
set D2 is countable, and we enumerate it as a sequence (yl)l∈N. Let us also fix some
translation-invariant (necessarily complete) metric d for X . For the sake of visual
clarity, we write ‖x‖ instead of d(x, 0).

We construct by induction a subsequence (mk) of (nk), a sequence (xk) ⊂ D1,
and a decreasing sequence of positive numbers (εk) with εk ≤ 2−k such that the
following properties hold for each k ∈ N:

(i) ‖xk‖ < εk;
(ii) ‖Tmk(xk) − yk‖ < εk;

(iii) ‖Tmk(xi)‖ < εk for all i < k;
(iv) if u ∈ X satisfies ‖u‖ < εk then ‖Tmi(u)‖ < 2−k for all i < k.

Starting with ε0 := 1, we use (2) and (3) of Definition 1.5 to find m0 such that
‖Sm0(y0)‖ < ε0 and ‖Tm0Sm0(y0) − y0‖ < ε0 and then pick some x0 ∈ D1

close to Sm0(y0), in order to ensure (i) and (ii). The inductive step is likewise easy:
having defined everything up to step k, one can first choose εk+1 such that (iv)
holds for k + 1 and then mk+1 such that (iii) holds, ‖Smk+1(yk+1)‖ < εk+1 and
‖Tmk+1Smk+1(yk+1) − yk+1‖ < εk+1, and after that xk+1 ∈ D1 close enough to
Smk+1(yk+1) to satisfy (i) and (ii).

By (i) and the completeness of (X, d), the series
∑

xj is convergent in X . We
claim that

x :=
∞∑

j=0

xj

is a hypercyclic vector for T . Indeed, for any l ∈ N one may write

‖Tml(x) − yl‖ ≤
∑
j<l

‖Tml(xj)‖ + ‖Tml(xl) − yl‖ +
∑
j>l

‖Tml(xj)‖

≤ lεl + εl +
∑
j>l

2−j

where we have used (iii), (ii), and (iv). Thus Tml(x) − yl → 0 as l → ∞, which
concludes the proof. �

REMARK 1.7 We have in fact proved the following more precise result: if T ∈
L(X) satisfies the Hypercyclicity Criterion with respect to some sequence (nk)k≥0

then the family (Tnk)k≥0 is universal, i.e. there exists some vector x ∈ X such that
the set {Tnk(x); k ≥ 0} is dense in X . In fact, for any subsequence (n′

k) of (nk),
the family (Tn′

k)k≥0 is universal: this is apparent from the above proofs.
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6 Hypercyclic and supercyclic operators

Theorem 1.6 will ensure the hypercyclicity of almost (!) all the hypercyclic oper-
ators in this book. We give two historical examples, due to G. R. MacLane [176] and
to S. Rolewicz [206]. The latter was the first example of a hypercyclic operator that
acts on a Banach space.

EXAMPLE 1.8 (G. R. MACLANE, 1951) The derivative operator D : f �→ f ′ is
hypercyclic on H(C).

PROOF We apply the Hypercyclicity Criterion to the whole sequence of integers
(nk) := (k), the same dense set D1 = D2 made up of all complex polynomials, and
the maps Sk := Sk, where Sf(z) =

∫ z

0
f(ξ) dξ. It is easy to check that conditions

(1), (2) and (3) of Definition 1.5 are satisfied. Indeed, (1) holds because Dk(P ) tends
to zero for any polynomial P , and (3) holds because DS = I on D2. To prove (2),
it is enough to check that Sk(zp) → 0 uniformly on compact subsets of C, for any
fixed p ∈ N (then we conclude using linearity). This, in turn, follows at once from
the identity

Sk(zp) =
p!

(p + k)!
zp+k. �

EXAMPLE 1.9 (S. ROLEWICZ, 1969) Let B : �2(N) → �2(N) be the backward
shift operator, defined by B(x0, x1, . . . ) = (x1, x2, . . . ). Then λB is hypercyclic
for any scalar λ such that |λ| > 1.

Observe that B itself cannot be hypercyclic since ‖B‖ = 1. Indeed, if T is a hy-
percyclic Banach space operator then ‖T‖ > 1 (otherwise any T -orbit would be
bounded).

PROOF We apply the Hypercyclicity Criterion to the whole sequence of integers
(nk) := (k), the dense set D1 = D2 := c00(N) made up of all finitely sup-
ported sequences and the maps Sk := λ−kSk, where S is the forward shift operator,
S(x0, x1, . . . ) = (0, x0, x1, . . . ). It is easy to check that conditions (1), (2) and (3) of
Definition 1.5 are satisfied. For (1) and (3) the arguments are the same as in Example
1.8, and (2) follows immediately from the estimate ‖Sk‖ ≤ |λ|−k. �

As a consequence of Theorem 1.6 we get the following result, according to which
an operator having a large supply of eigenvectors is hypercyclic. This is the so-
called Godefroy–Shapiro Criterion, which was exhibited by G. Godefroy and J.
H. Shapiro in [123].

COROLLARY 1.10 (GODEFROY–SHAPIRO CRITERION) Let T ∈ L(X) where X

is a separable F -space. Suppose that
⋃

|λ|<1 Ker(T − λ) and
⋃

|λ|>1 Ker(T − λ)
both span a dense subspace of X . Then T is hypercyclic.
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1.1 How to prove that an operator is hypercyclic 7

PROOF We show that T satisfies the Hypercyclicity Criterion with (nk) := (k) and

D1 := span

( ⋃
|λ|<1

Ker(T − λ)

)
, D2 := span

( ⋃
|λ|>1

Ker(T − λ)

)
.

The maps Sk : D2 → X are defined as follows: we set Sk(y) := λ−ky if T (y) =
λy with |λ| > 1, and we extend Sk to D2 by linearity. This definition makes sense
because the subspaces Ker(T −λ), |λ| > 1, are linearly independent. Thus, any non-
zero y ∈ D2 may be uniquely written as y = y1+· · ·+yp, with yi ∈ Ker(T−λi)\{0}
and |λi| > 1. Having said that, it is clear that the assumptions of the Hypercyclicity
Criterion are satisfied. �

REMARK In Corollary 1.10 we see for the first time that hypercyclicity can be
inferred from the existence of a large supply of eigenvectors. This will be a recurrent
theme in the book.

To illustrate the Godefroy–Shapiro Criterion, we are now going to establish the
hypercyclicity of a certain classical operator defined on a Hilbert space of holomor-
phic functions. Let us first introduce some terminology. In what follows, T is the unit
circle {z ∈ C; |z| = 1} and D is the open unit disk {z ∈ C; |z| < 1}.

We denote by H2(D) the classical Hardy space on D. By definition, H2(D) is the
space of all holomorphic functions f : D → C such that

‖f‖2
H2 := sup

r<1

∫ π

−π

|f(reiθ)|2 dθ

2π
< ∞. (1.1)

The Hardy space will appear several times in the book, and we assume that the
reader is more or less familiar with it. Moreover, very few properties of H2(D) will
be needed in our discussion (see Appendix B). We refer to e.g. [101] for an in-depth
study of Hardy spaces.

We recall here that H2(D) can also be defined in terms of Taylor expansions. Any
holomorphic function f : D → C can be (uniquely) written as f(z) =

∑∞
0 cn(f)zn.

Then f is in H2(D) if and only if
∑∞

0 |cn(f)|2 < ∞, and in that case ‖f‖2
H2 =∑∞

0 |cn(f)|2. This shows that H2(D) is canonically isometric to the sequence space
�2(N) and also to the closed subspace of L2(T) defined by

H2(T) := {ϕ ∈ L2(T); ϕ̂(n) = 0 for all n < 0},

where the ϕ̂(n) are the Fourier coefficients of ϕ. The function of H2(T) associated
with a given f ∈ H2(D) is called the boundary value of f and will be denoted
by f∗.

We summarize these elementary facts as follows: H2(D) is a Hilbert space whose
norm can be defined in two equally useful ways:

‖f‖2
H2 =

∞∑
n=0

|cn(f)|2 = ‖f∗‖2
L2(T).
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8 Hypercyclic and supercyclic operators

Finally, we recall that convergence in H2(D) entails uniform convergence on
compact sets. In particular the point evaluations f �→ f(z) are continuous linear
functionals on H2(D), so that for each z ∈ D there is a well-defined reproducing
kernel kz at z. By definition, kz is the unique function in H2(D) satisfying

∀f ∈ H2(D) : f(z) = 〈f, kz〉H2 . (1.2)

In the present case, kz is given explicitly by the formula

kz(s) =
1

1 − z̄s
,

and (1.2) is just a rephrasing of Cauchy’s formula.
The set of all bounded holomorphic functions of D will be denoted by H∞(D). It

is a non-separable Banach space when endowed with the norm

‖u‖∞ = sup{|u(z)|; |z| < 1}.

If φ is a function in H∞(D), the multiplication operator Mφ associated with φ

is defined on H2(D) by Mφ(f) = φf . From formula (1.1), it is readily seen that

inf
z∈D

|φ(z)| × ‖f‖2 ≤ ‖Mφ(f)‖2 ≤ sup
z∈D

|φ(z)| × ‖f‖2

for any f ∈ H2(D). This shows in particular that Mφ is a bounded operator on
H2(D), with ‖Mφ‖ ≤ ‖φ‖∞.

It is not hard to see that a multiplication operator Mφ cannot be hypercyclic (for
example, for f ∈ H2(D), try to approximate 2f by functions of the form φnf ). As
the next example shows, things are quite different for the adjoint operator M∗

φ .

EXAMPLE 1.11 Let φ ∈ H∞(D) and let Mφ : H2(D) → H2(D) be the associated
multiplication operator. The adjoint multiplier M∗

φ is hypercyclic if and only if φ is
non-constant and φ(D) ∩ T �= ∅.

PROOF For any z ∈ D, let kz ∈ H2(D) be the reproducing kernel at z. Then kz is
an eigenvector of M∗

φ , with associated eigenvalue λ(z) := φ(z). Indeed, we have

〈f,M∗
φ(kz)〉H2 = 〈φf, kz〉H2 = φ(z)f(z) = 〈f, φ(z)kz〉H2

for all f ∈ H2(D), so that M∗
φ(kz) = φ(z) kz . Let U := {z ∈ D; |φ(z)| < 1}

and V := {z ∈ D; |φ(z)| > 1}. If φ is non-constant and φ(D) ∩ T �= ∅, the
open sets U and V are both non-empty by the open mapping theorem for analytic
functions. In view of Corollary 1.10, it is enough to show that span{kz; z ∈ U}
and span{kz; z ∈ V } are dense in H2(D). But this is clear, since if f ∈ H2(D) is
orthogonal to kz either for all z ∈ U or for all z ∈ V then f vanishes on a non-empty
open set and hence is identically zero.

Conversely, assume that M∗
φ is hypercyclic (so that φ is certainly non-constant).

Then ‖Mφ‖ = ‖M∗
φ‖ > 1, hence supz∈D |φ(z)| > 1. Moreover, we also have

infz∈D |φ(z)| < 1. Indeed, if we assume that infz∈D |φ(z)| ≥ 1 then 1/φ ∈ H∞ and
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1.1 How to prove that an operator is hypercyclic 9

M∗
1/φ is not hypercyclic since ‖M∗

1/φ‖ = ‖M1/φ‖ ≤ 1; and since M∗
1/φ = (M∗

φ)−1,
Corollary 1.3 shows that M∗

φ is not hypercyclic either. Thus, we get

inf
z∈D

|φ(z)| < 1 < sup
z∈D

|φ(z)|,

which yields φ(D) ∩ T �= ∅ by a simple connectedness argument. �

We now turn to the “supercyclic” analogues of Theorems 1.2 and 1.6. This is
essentially a matter of including a multiplicative factor, so the proofs will be rather
sketchy.

THEOREM 1.12 Let X be a separable F -space, and let T ∈ L(X). The following
are equivalent:

(i) T is supercyclic;
(ii) For each pair of non-empty open sets (U, V ) ⊂ X , there exist n ∈ N and λ ∈ K

such that λTn(U) ∩ V �= ∅.

In that case, SC(T ) is a dense Gδ subset of X .

PROOF As before, let (Vj)j∈N be a countable basis of open sets for X . Then one
can write SC(T ) =

⋂
j

⋃
λ,n(λTn)−1(Vj), and the proof is completed exactly as

that of Theorem 1.2. �

The following definition and the theorem below are due to H. N. Salas [216].

DEFINITION 1.13 Let X be a Banach space, and let T ∈ L(X). We say that T

satisfies the Supercyclicity Criterion if there exist an increasing sequence of integers
(nk), two dense sets D1,D2 ⊂ X and a sequence of maps Snk

: D2 → X such that:

(1) ‖Tnk(x)‖ ‖Snk
(y)‖ → 0 for any x ∈ D1 and any y ∈ D2;

(2) TnkSnk
(y) → y for each y ∈ D2.

THEOREM 1.14 Let T ∈ L(X), where X is a separable Banach space. Assume
that T satisfies the Supercyclicity Criterion. Then T is supercyclic.

PROOF Let U and V be two non-empty open subsets of X . Pick x ∈ D1 ∩ U

and y ∈ D2 ∩ V . It follows from part (1) of Definition 1.13 that we can find a
sequence of non-zero scalars (λk) such that λkTnk(x) → 0 and λ−1

k Snk
(y) → 0.

(Assume that αk := ‖Tnk(x)‖ and βk := ‖Snk
(y)‖ are not both 0. If αkβk �= 0,

put λk := β
1/2
k α

−1/2
k . Otherwise, take λk := 2kβk if αk = 0 and λk := 2−kα−1

k if
βk = 0). Then, for large enough k, the vector z := x+λ−1

k Snk
(y) belongs to U and

λkTnk(z) belongs to V . By Theorem 1.12, this shows that T is supercyclic. �

We illustrate the Supercyclicity Criterion with the following important example.

EXAMPLE 1.15 Let Bw be a weighted backward shift on �2(N); Bw is the op-
erator defined by Bw(e0) = 0 and Bw(en) = wnen−1 for n ≥ 1, where (en)n∈N

is the canonical basis of �2(N) and w = (wn)n≥1 is a bounded sequence of positive
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10 Hypercyclic and supercyclic operators

numbers. Then Bw is supercyclic. In particular, if e.g. wn → 0 as n → ∞ then Bw

is a supercyclic operator which has no hypercyclic multiple.

PROOF Let D1 = D2 := c00(N) be the set of all finitely supported sequences.
Let Sw be the linear map defined on D2 by Sw(en) = w−1

n+1en+1 and, for each
k ∈ N, set Sk := Sk

w. Then, the Supercyclicity Criterion is satisfied with respect to
(nk) := (k) because ‖Bk

w(x)‖ = 0 for large enough k and Bk
wSk = I on D2.

If wn → 0 then ‖(λBw)n‖ = |λ|n supi∈N(wi+1 · · ·wi+n) → 0 as n → ∞, for
each fixed λ ∈ C. Hence, no multiple of Bw can be hypercyclic. �

1.1.1 The hypercyclic comparison principle

We conclude this section by introducing the following well-known concepts; they
will be used several times in the book.

DEFINITION 1.16 Let T0 : X0 → X0 and T : X → X be two continuous maps
acting on topological spaces X0 and X . The map T is said to be a quasi-factor of T0

if there exists a continuous map with dense range J : X0 → X such that the diagram

X0
T0 ��

J

��

X0

J

��
X

T �� X

commutes, i.e. TJ = JT0. When this can be achieved with a homeomorphism
J : X0 → X (so that T = JT0J

−1), we say that T0 and T are topologically
conjugate. Finally, when T0 and T are linear operators and the factoring map (resp.
the homeomorphism) J can be taken as linear, we say that T is a linear quasi-factor
of T0 (resp. that T0 and T are linearly conjugate).

The usefulness of these definitions comes from the following simple but important
observation: hypercyclicity is preserved by quasi-factors and supercyclicity as well
as the Hypercyclicity Criterion are preserved by linear quasi-factors. Moreover, any
factoring map J sends hypercyclic points to hypercyclic points. This is indeed obvi-
ous since, with the above notation, we have O(J(x0), T ) = J(O(x0, T0)) for any
x0 ∈ X0. In J. H. Shapiro’s book [220], this observation is called the hypercyclic
comparison principle. See Exercise 1.14 for a simple illustration.

A particular instance of the hypercyclic comparison principle is the following use-
ful remark: if T ∈ L(X) is hypercyclic and if J ∈ L(X) has dense range and
commutes with T then HC(T ) is invariant under J .

1.2 Some spectral properties

In this section, we show that hypercyclic and supercyclic operators have some note-
worthy spectral properties. We start with the following simple observation. Here and
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