
1 Introduction

It is highly probable that you will use a laptop computer when doing the exercises in
this book. If so, you may be interested to know that the central processing unit of your
computer resides in a thin sliver of silicon, about 1 square centimetre in area. This small
chip contains over 100,000,000 Si MOSFETs,1 each about a thousand times smaller
than the diameter of a human hair! The slender computer that you nonchalantly stuff
into your backpack has more computing power than the vacuum-tube computers that
occupied an entire room when I was a student over 40 years ago.

When you are reading this book, you may be distracted by an incoming call on your
cell ’phone. That may get you wondering what’s inside your sleek ‘mobile’. If you
opened it up, and knew where to look, you’d find some GaAs HBTs.2 These transistors
can operate at the high frequencies required for local-area-network telecommunications,
and they can deliver the power necessary for the transmission of signals.

Of course, a cell ’phone nowadays is no longer just a replacement for those clunking,
tethered, hand-sets of not so long ago: it is also a camera and a juke box. The immense
storage requirements of these applications are met by Flash memory, comprising more
millions of Si MOSFETs.

Your cell ’phone is really a PDA,3 and probably also allows internet access, in which
case you may wonder how signals from around the globe find their way into your
machine. Somewhere in the communications chain there’s probably a low-noise amplifier
to receive tiny signals and not add undue noise to them. GaAs HBTs are good for
this, but even better are InP HEMTs.4 If satellites are involved, then the base station
will employ high-power transistors, possibly lateral-diffused Si MOSFETs, or maybe
GaN HJFETs.5

So, without straying very far from where you are sitting as you read this, you have
tangible evidence of the dramatic influence electronics has on the way many of us conduct
our business and recreation. All the different transistors mentioned above are described
in this book, and are grouped according to their ability to perform: in high-speed digital
logic; at high frequencies; with low noise; at high output power; in semiconductor
memory.

1 Metal-Oxide-Semiconductor Field-Effect Transistors.
2 Heterojunction Bipolar Transistors.
3 Personal Digital Assistant.
4 High Electron Mobility Transistors.
5 Heterojunction Field-Effect Transistors.
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2 1 Introduction

Of course, our electronics-oriented activities would not be possible if the supply of
electricity were curtailed. This could happen, either by the exhaustion of the Earth’s
store of fossil fuels, or by the threat to our habitable environment that the extraction
and use of them entails. Alternate, and renewable, forms of electrical energy generation
are desirable; photovoltaics, using semiconductor diodes as solar cells, is an attractive
proposition. How solar cells work is described in this book. We look at traditional Si
cells, and at both thin-film cells and tandem cells for possible implementation in the
future.

You may know that about 20% of the world’s energy consumption goes into producing
light. Glance up at the incandescent light bulb that is illuminating your room: it’s so
inefficient that if you had a few of them in use, then you probably wouldn’t need to heat
your study in winter! Again, some alternative is needed; LEDs6 using diodes made from
compound semiconductors are beginning to make an impact in this area. We describe
how high-brightness LEDs work, and look at ways of producing white light.

To understand the operation of all these transistors and diodes, and to provide the
knowledge base that will enable you to understand new devices as they appear, and to
design better devices yourself, a solid, physical understanding of semiconductors must
be attained. The first part of this book is devoted to this. The emphasis is on Quantum
Mechanics, as this branch of physics is needed increasingly to understand transistors
as they move from the micro- to the nano-realm, and also, of course, to understand
interactions between electrons and holes and photons in optoelectronic diodes.

The book ends with a brief look at cylindrical nanotransistors, the future development
of which may perhaps involve you?

Enjoy the book!

6 Light-Emitting Diodes.
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2 Energy band basics

Louis de Broglie, in his Ph.D. thesis of 1924, postulated that every object that has
momentum p also has a wavelength λ:

p = h

λ
, (2.1)

where h is Planck’s constant. Macroscopic objects of our everyday experience have
extremely short wavelengths, so they are invariably viewed as particles, with a point
mass and an observable trajectory. Contrarily, microscopic objects can have much longer
wavelengths, and may do wave-like things, such as diffract around other microscopic
objects. Electrons and atoms are microscopic objects, so when we need to consider them
both together we must take a quantum-mechanical, rather than a classical, approach.
This is what we do in this chapter. Our initial goal is to develop the concept of energy
bands, representing ranges of permissible energies for electrons within a solid. We then
seek to provide an understanding of related concepts that are used throughout this book:
electron states, crystal momentum, band structure, holes, effective mass, energy band
diagrams. These objectives are most directly arrived at from a consideration of the
periodic nature of the potential through which the electrons would move in a perfectly
crystalline material.

2.1 Periodic structures

Crystalline structures are based on a matrix of points called a Bravais lattice. For the
Group IV semiconductors and most of the III-V semiconductors that are considered in
this book, the Bravais lattice is the face-centred cubic lattice. To this underlying structure
are added the actual atoms that constitute the basis of a particular material. The basis
for Si, Ge, GaAs, InP, for example, comprises two atoms, which are shown as any
neighbouring pair of shaded and unshaded atoms in Fig. 2.1. Each atom occupies a site
on a face-centred cubic lattice, so the actual structure comprises two, interpenetrating,
face-centred cubic lattices. When the two atoms are the same, as in the elemental
semiconductors Si and Ge, the structure is called diamond. When the two atoms are
different, e.g., Ga and As, the structure is referred to as sphalerite or zinc blende. The
bonding of atoms in these structures is tetragonal, as shown by the linkages in Fig. 2.1.

Instead of trying to deal with the countless numbers of atoms that comprise an actual
piece of crystalline material, it is often convenient to capture the structural essence of a
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4 2 Energy band basics
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Figure 2.1 The diamond and sphalerite crystal structure. There are two, interpenetrating,
face-centred cubic (FCC) lattices, one comprising the shaded atoms and the other comprising the
unshaded atoms. The corresponding points in each FCC lattice are displaced by a

4 (x̂ + ŷ + ẑ),
where a, the lattice constant, is the length of the side of the cube. Adapted from Sze [1], C© John
Wiley & Sons, Inc. 1985, reproduced with permission.

crystal in its primitive unit cell, or, simply, primitive cell. This is a volume, containing
precisely one lattice point, from which, by appropriate rotations and translations, the
space of the Bravais lattice can be exactly filled. There is no unique primitive unit cell for
a given Bravais lattice, and one of them is shown by the dashed lines in Fig. 2.1. Another
primitive unit cell is the Wigner-Seitz primitive cell, the construction of which is
illustrated in Fig. 2.2 for a simple face-centred rectangular matrix of unshaded atoms. The
primitive unit cell in this case is a hexagon, which also contains one of the shaded atoms
from an identical matrix of atoms. Thus, this particular crystal structure has a basis of two.
For a real 3-D crystal the lines between nearest-neighbour atoms are bisected by planes;
and for the face-centred cubic lattice the Wigner-Seitz cell is a rhombic dodecahedron
[2, Fig. 1.8b].

2.2 Periodic potential

To illustrate the relationship between energy and momentum in a crystalline material,
we consider a ‘toy’ structure comprising a one-dimensional array of primitive cells, with
each cell having a basis of unity, and the atom being monovalent (see Fig. 2.3a). The
potential energy of a single electron due to Coulombic interaction with the ion cores
of the monovalent atoms is shown in Fig. 2.3b. However, we are not interested here
in the precise form of the potential energy: we are only concerned with its periodicity.
Therefore, we reduce the potential-energy profile to the delta-function representation
shown in Fig. 2.3d. Don’t be alarmed that the last profile might not be very realistic:
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2.2 Periodic potential 5

Figure 2.2 Example of a 2-D crystal comprising simple face-centred rectangular arrays of
unshaded and shaded atoms. The Wigner-Seitz primitive unit cell is shown by the solid lines.
These lines connect the perpendicular bisectors of the lines joining one unshaded atom to each
neighbouring unshaded atom. One atom from the shaded array falls within the primitive unit
cell; thus, this crystal structure has a basis of two atoms.
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Figure 2.3 (a) 1-D periodic array of primitive cells, each cell containing one monovalent atom.
(b) 1-D Coulombic potential energy for an electron in the 1-D array. Dashed lines are the
potential energies due to a single ion core. Solid lines are the total potential energy. (c) 1-D
square well representation of (b). (d) 1-D delta-function representation of (c).

even Fig. 2.3b is inaccurate, as it omits effects such as: the potential energy of an electron
due to the proximity of other electrons; the different spacing between atoms in different
directions of the real (3-D) crystal; and the possible presence of dissimilar elements in
the crystal, e.g., as in compound semiconductors, such as GaAs. The important fact is
that any periodic potential leads to the revelation of energy bands, and, therefore, will do
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6 2 Energy band basics

for our present purpose.1 The profile in Fig. 2.3d, comprising N delta-function potential
barriers spaced a apart, can be expressed as

U (x) = β

N−1∑
l=0

δ(x − la) , (2.2)

where δ(x) is the Dirac delta function and β is some constant.2

2.3 Schrödinger’s equation

When considering the fine details of an electron’s motion in a solid, we need to consider
its wave-like nature. The appropriate equation is the Schrödinger Wave Equation, which
was originally postulated in 1925 to provide a formal description of the experimentally
observed, discrete frequencies of light emission from an excited hydrogen atom. You can
have confidence in the equation because, in the intervening 80+ years, no experiments
have been reported that give results contrary to the predictions of the equation. The
form of the equation of interest to us here is the time-independent Schrödinger Wave
Equation, i.e., in one dimension,

− �
2

2m0

d2ψ(x)

dx2
+ U (x)ψ(x) = Eψ(x) , (2.3)

where m0 is the electron rest mass, ψ(x) is the position-dependent part of the electron
wavefunction �(x, t), U is the potential energy and E is the total energy.3

Thinking in terms of conservation of energy, it can be seen that the first term in
(2.3) must relate to kinetic energy. Often, the first two terms are grouped together and
described as the Hamiltonian of the system

Hψ = Eψ , (2.4)

where the Hamiltonian H operates on the wavefunction to describe the total energy of
the system.

Niels Bohr’s statistical interpretation of the wavefunction is particularly helpful in
getting a feeling for what � really is: � �∗dx ≡ |�(x, t)|2 dx is the probability of
finding the electron between x and (x + dx) at time t .4 If the electron is somewhere in x
(1-D case), then it follows that

∫ +∞
−∞ |�(x, t)|2 dx = 1. Equivalently,

∫ +∞
−∞ |ψ(x)|2 dx =

1. Thus, �(x, t) and ψ(x) enable us to compute the probability of finding an electron

1 If you insist on giving some physical significance to the potential profile in Fig. 2.3d, then you may wish
to view the electron as being largely confined to the vicinity of an atom, but having some probability of
tunnelling to a neighbouring, identical, region through a thin potential barrier.

2 The property of the delta function that is relevant here is: δ(y) = 0 if y �= 0, and δ(y) = ∞ if y = 0.
3 This equation follows from the full, time-dependent Schrödinger Wave Equation, which describes the

full wavefunction, i.e., in the 1-D case, �(x, t). In all our work we will take the potential energy to be
independent of time. This allows the full equation to be solved by the method of Separation of Variables, for
which solutions are simply: �(x, t) = ψ(x) f (t), where f (t) = exp(−i Et/�) and E = �ω. Thus, we can
solve (2.3) for ψ(x), and then always multiply by f (t) to get the full time dependence if we need it.

4 The superscript * denotes the complex conjugate.
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2.4 Energy bands 7

somewhere in space at some time. This is how quantum mechanics works: it deals in
probabilities. This is not an inadequacy of the theory; it is a description of how Nature
appears to work at the level of very tiny entities.

2.4 Energy bands

Consider the periodic delta-function potential in Fig. 2.3d. Here, we use it to develop an
understanding of energy bands, closely following the treatment of Griffiths [3]. In the
region 0 < x < a the potential energy is zero, so, from (2.3)

d2ψ

dx2
+ g2ψ(x) = 0 , (2.5)

where

g =
√

2m0 E

�
. (2.6)

The general solution is

ψ(x) = A sin(gx) + B cos(gx), (0 < x < a) . (2.7)

A and B are constants that need to be evaluated by considering the boundary conditions.
The general rules are:

� ψ must be continuous at a boundary;
� dψ/dx must be continuous at a boundary, except when the potential energy goes to

infinity.5

In our problem we have lots of boundaries, and at each one U → ∞. Fortunately, because
of the periodic nature of the potential, we can reach a solution quite easily by appealing
to Bloch’s Theorem, which states that for a periodic potential U (x + a) = U (x), the
solutions to Schrödinger’s equation satisfy

ψk(x) = uk(x)eikx , (2.8)

where uk(x) has the periodicity of the lattice, and the subscript k indicates that u(x)
has different functional forms for different values of the Bloch wavenumber k. Note
that if u is not periodic but is a constant, then the Bloch wave becomes a plane wave.
Therefore, a Bloch wave, given by (2.8), is a plane wave modulated by a function that
has the periodicity of the lattice. An alternative way of stating Bloch’s Theorem follows
from (2.8), namely

ψk(x + a) = eikaψk(x) . (2.9)

5 If there is a discontinuity in dψ/dx , then the kinetic-energy term in (2.3) → ∞, but the equation is still
satisfied if U → ∞. When we resort to the ‘Effective-mass Schrödinger Wave Equation’, the boundary
condition for the derivative of ψ must also include what we shall call the effective mass, if this property
changes across the boundary (see Section 2.11).
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8 2 Energy band basics

Note that this equation does not state that ψk(x) is periodic, but it does lead to |ψk(x)|2
being periodic. The latter is comforting because one would expect an electron to have an
equal probability of being at any of the identical sites in the linear array. The periodicity
breaks down at the edges of the crystal, but that shouldn’t have a significant effect on
the electrons deep within the crystal if the array is very long compared to the separation
between atoms, i.e., if N , the number of primitive cells, is very large. Mathematically, we
can impose complete periodicity by bending the array into a circle so that x = −a follows
x = (N − 2)a in Fig. 2.3d. We then have a convenient, so-called periodic boundary
condition:

ψk(x + Na) = ψk(x) . (2.10)

Using this in (2.9), yields

eik Naψk(x) = ψk(x) , (2.11)

from which it is clear that

k = 2πn

Na
, (n = 0,±1,±2,±3, · · ·) , (2.12)

where n is an integer. (2.9) can now be used to obtain the wavefunction in the region
−a < x < 0 of Fig. 2.3d:

ψk(x) = e−ika[A sin g(x + a) + B cos g(x + a)], (−a < x < 0) . (2.13)

Now that we have expressions for the wavefunctions in adjoining regions we can use the
matching conditions for ψ and dψ/dx to evaluate or eliminate the constants A and B.
Matching the wavefunctions at x = 0 gives

B = e−ika[A sin(ga) + B cos(ga)] . (2.14)

Because of the delta function, the derivative of ψ is not continuous at x = 0, so we
need to find the discontinuity in order to get another expression linking A and B. For
U (x) = βδ(x), which comes from (2.2), the discontinuity is

�(
dψ

dx
) = 2m0β

�2
ψ(0) .6 (2.15)

Thus, it follows from the derivatives of ψ at x = 0 that

g A − e−ikag[A cos(ga) − B sin(ga)] = 2m0β

�2
B . (2.16)

6 To obtain this, integrate Schrödinger’s equation over a tiny interval spanning x = 0. The integral of the
d2ψ/dx2 term is precisely the discontinuity we seek. It is equal to the integrals over the Eψ and Uψ terms.
In the former term E is a constant and ψ is finite, so integrating over an infinitesimal interval gives zero.
The same would usually be true for the Uψ term, but because U = ∞ at x = 0, the integral is finite and
equals βψ(0), where we have used another property of the delta function:

∫ ∞
−∞ δ(x) dx = 1.
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2.4 Energy bands 9
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Figure 2.4 Plot of (2.17) for
[

m0βa
�2

] = 10, showing the allowed values of ga, i.e., those within the
dashed lines. The forbidden values of ga lie in the areas outside the dashed lines.

From (2.14) and (2.16), after some manipulation, an expression devoid of A and B
results:

cos(ka) = cos(ga) +
[

m0βa

�2

]
sin(ga)

ga
. (2.17)

This key equation unlocks the secret of bands: the right-hand side is a function of ga,
and g is a function of the energy E from (2.6), but the left-hand side decrees that f (ga)
must be bounded by ±1. Thus, values of E are only allowed when −1 ≤ f (ga) ≤ 1.
This is illustrated by the plot of (2.17) in Fig. 2.4. Note that this figure is arbitrarily
truncated at g = 6π/a, but, in reality, g could be extended indefinitely; thus, there are
an infinite number of ranges of allowed energy, each one of which is called an energy
band.

The energy bands corresponding to the allowed values of ga, and the forbidden
regions (bandgaps) separating the bands, are usually displayed on a plot of energy E
versus Bloch wavevector k. The version shown in Fig. 2.5 is known as an extended-
zone plot. The first zone spans the range −π/a < k < π/a; the second zone is split
into two: −2π/a < k < −π/a and π/a < k < 2π/a; etc. Thus each zone extends over
a range of 2π/a in k. From (2.12), it is seen that the corresponding range in n is
N , the number of primitive calls. As the latter number will be usually very large in
semiconductor devices, the separation of neighbouring k values (=2π/Na), is so small
that the E-k relation appears continuous within a band.

An E-k plot is often interpreted as an energy-momentum relationship. This is because,
from (2.1), momentum can be written as �k, where � = h/2π is Dirac’s constant,
and k = 2π/λ is the general relationship between wavelength and wavevector. For the
specific case of a Bloch wavevector, �k is called the crystal momentum. The crystal
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10 2 Energy band basics
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Figure 2.5 ‘Extended-zone’ plot of energy (from Fig. 2.4 and Equation (2.6)) for the first five
allowed energy bands. For example, the first band of ga runs from ga = 0.83π to ga = 1.00π

(see Fig. 2.4). This range of ga values, and their negatives, are then used in (2.6) to obtain the
first allowed band of energies. The corresponding ka range for the first band is −π < ka < π .
The parabola shown by the dashed curve is the E-k relation for a free electron. Note how the
allowed bands become closer to this parabola as the energy increases, indicating the increasing
‘freedom’ of the higher energy electrons.

momentum is not the actual mechanical momentum of the electron: it is the momentum
of the electron due to the action of applied forces, as we show in Section 2.9.

2.5 Reduced-zone plot

An alternative way of displaying the E-k relationship is to compress all of its information
into the first zone. This is achieved by horizontally shifting each of the curves from the
higher order zones in the extended-zone plot by an appropriate multiple of 2π/a. For
example, consider the positive wavevectors in the 4th and 5th zones, i.e., 3π/a < k <

5π/a. Now, write the wavevector as

k = 4π

a
+ k ′ , (2.18)

where the new wavevector k ′ is constrained to −π/a ≤ k ′ ≤ π/a, i.e., to the first zone.
The Bloch wavefunction from (2.8) then becomes

ψk(x) = uk(x)ei4πx/aeik ′x

≡ u′
k(x)eik ′x

= ψk ′(x) . (2.19)
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