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1.2 Typographical Conventions
The following typographical conventions are used in this book:
■ medium-weight serif font – normal text

This sentence is written in the font used for normal text.
■ bold italicized serif font – rules
■ medium-weight sans serif font – computer code
■ bold sans serif font – Fortran keywords

Examples are the words “null ,” “associated,” and “save” in Rule 74. Note
that the font for keywords and for names from the computer code is used
in the body of the normal text, not just in the code segment.

■ medium-weight italicized serif font – terms from the either
the Fortran 2003 or the Fortran 2008 Standard, References [39]
and [43]
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2 MODERN FORTRAN

In source code listings, points of ellipsis (. . .) are used to indicate missing
code – nonessential code that is left out for brevity and clarity.

1.3 Source Code Listings
For the most part the code examples in the book are short sections of code. As
such, they cannot be compiled. In some instances, however, complete programs
are presented as numbered listings. In both cases, comments explaining the
key points are embedded in the code and then referred to in the text. These are
marked and numbered, in both places, by “*Cmnt-i:,” where i is the comment
number. Here, for example, is one such comment and the following two lines
of code, and then the explanation referring to it in the text:

! *Cmnt−1: Check arguments f o r s a n i t y
s e l e c t case ( d i r e c t i o n )
case ( ’ fo rward ’ , ’FORWARD’ , ’ r e v e r s e ’ , ’REVERSE ’ )

Using Rule 63, the first argument check (*Cmnt-1) can be entirely elimi-
nated . . .
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2.

General Principles

“The purpose of computing is not numbers. The purpose of computing is understanding.”
– Hamming

1. Write programs that are clear to both the reader and the compiler.
The first and foremost general principle of programming is clarity. From clarity
comes the ability to test, to reuse, and to audit. One simple test is whether you
believe you will be able to understand the code if you come back to it a year
later.

Of course, you write programs to have the computer calculate something for
you. And you know that the computer must be told exactly what to compute.
Your program must completely and correctly specify what is to be computed.

If you are making a numerical calculation, you likely have some consideration
for the efficiency of your calculation. The best way to gain efficiency is to first
choose an efficient algorithm and then to write simple, clear, and logical code
to implement it. Compared with more complex code, it is easier to understand
and easier for the compiler to optimize.

In addition to writing code for the computer, you are also writing code for
humans, yourself included. The purpose of the calculations and the methods
used to do so must be clear.

To achieve these goals, write code that is as simple as possible. Use white
space to aid your eye in following the calculation specified by the source
code. Comment what cannot be understood from the code itself. The rules
in this book follow from these ideas. Using them will promote consistency of
visual layout, documentation, programming logic, and the naming of program
entities. This consistency, in turn, increases clarity; the program is clear to a
programmer, whether he or she is familiar with it or not, or experienced or not.
Moreover, for the programmer who is charged with learning and modifying
it, a program written in a consistent manner reduces the time required to get
“up to speed.”

Ways to document a program are described in Chapter 5. The term “self-
documenting” is often used to describe code that conveys its design without
excessive commentary. The names of both variables and named constants
should indicate what they represent. The algorithms used in the program
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4 MODERN FORTRAN

should be familiar to anyone educated in the field for which the program has
been written. We recommend the naming conventions in Chapter 4.

Clarity for the compiler is aided by simplicity and the use of language-defined
structured constructs (e.g., rather than go to statements) to achieve program
flow. Excessive branching, especially inside do loops, can often thwart opti-
mization.

Avoid “cute tricks.” They are often found in code that may conform to the
standard, but take advantage of things like internal data representations, which
are not standardized. These tricks have two problems: They obscure what you
are trying to compute, from both the compiler and you, and they are very
likely not portable, even among different compilers on the same hardware.
Many uses of the intrinsic function transfer and bit manipulation intrinsic
functions fall into this category.

A simple test for whether a program unit is clearly expressed is the Telephone
Test (see Reference [45]). If the program can be read over the telephone, and
completely understood by the listener, it is likely clear.

2. Write programs that can be efficiently tested.
A program must produce correct results when provided valid input. Key to
this is to emphasize error detection and correction as early as possible in the
development and testing process. The earlier a problem is detected, the less it
costs to fix it.

Several techniques can be used to help produce quality code with reduced
debugging times. First, when writing code, take advantage of modern features
that allow the compiler to detect errors at compile time. Two key items for
Fortran programmers are the use of implicit none, for avoiding typograph-
ical mistakes, and the use of modules for packaging and, doing so, ensuring
interface checking. The use of these two features is highly recommended for
all code.

Second, it is desirable to modularize and code individual algorithms into
procedures in a way that they can be independently tested and verified. Testing
procedures independent of the entire application is called “unit testing,” and
the individual tests are called “unit tests.” Unit tests are a fundamental tool for
validating a procedure (see Reference [47]).

To be easily unit tested, a procedure should use a minimal number of variables
outside its local scope. A test driver can then be written to present the target
procedure with different combinations of arguments, and compare the actual
returned results with known good results.

Each test driver should indicate in some manner, for example in a log file,
each of the tests it has run, and a PASS or FAIL flag. Simple scripts can then
be written to run each of the unit test drivers, and to summarize the results.
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GENERAL PRINCIPLES 5

Regressions, code that worked previously but, after some changes have been
made, no longer does, can be quickly spotted and repaired.

A third aspect of reliability is the rejection of inputs that are invalid. For
example, it is often possible to include non-time-consuming tests of the input
arguments for validity, such as ensuring that arrays have compatible sizes. The
routine can then return an error code back to the caller instead of producing
incorrect results. This is discussed in more detail in Section 6.4. By returning
an error code, instead of aborting, unit tests may be written to test for bad
inputs, as well as good inputs.

Finally, once individual components of an application have been tested, tests
on complete problems can be made to verify the application as a whole. Inputs
representing typical end-user problems can be provided that produce known
good results. Tests should encompass the full range of allowable inputs. Tests
of numerical algorithms should include very large and small values; decision
algorithms should be tested with as many combinations, such as true or false
conditions, as practical. For numerical algorithms that will break down with
very large arguments, such as computing cos(1010), the documentation should
specify to what degree it has been tested and the results of the tests. As an
application is developed and maintained, the test base provides a valuable
feedback mechanism to look for regressions.

3. Write programs that will scale to different problem sizes.
Scalability is the property of a program to accommodate a wide range of
problem sizes. In other words, a program should be able to handle small test
cases using minimal computer resources, and, ideally, it should also be able
to handle the largest problems that a given machine is capable of processing
without changing any of the source code. Arrays and other data structures
should be able to adjust themselves to any reasonable problem size. This can
also result in greater efficiency through better use of cache memory.

Since Fortran 90, Fortran has supported various techniques – pointers, and
allocatable variables, assumed shape and automatic arrays – for dynamically
allocating memory based on problem size. These should be used instead of
fixed dimensions wherever an array size may vary (instead of the earlier practice
of hard-coding maximum sizes).

Scalability is also often used to describe how well a program takes advantage
of multiple processors and the multiple cores of modern processors. Many
schemes for executing portions of a code in parallel have been implemented by
the Fortran community, including OpenMP and MPI. Section 12.2.2 covers
OpenMP in more detail; Section 12.2.3 does the same for MPI. Fortran 2008
introduces the do concurrent variant of the do construct for shared memory
parallelism (that is, all the processors share a common memory address space).
It also introduces the coarray, which allows multiple copies of a program to
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6 MODERN FORTRAN

run in both shared and distributed memory environments. These are covered
in more detail in Section 12.3.

4. Write code that can be reused.
Human time is expensive. Computer hardware and software is cheap in com-
parison. It is therefore advantageous to write code in such a way that it can be
reused in new applications and in new environments with minimal change.

Some well-known techniques that aid reuse include:
■ Following the current Fortran standard. The standard is the contract

between the compiler writer and the application developer. When non-
standard code is used, there are no guarantees that the code will run with
future hardware or software.

■ Maximizing the use of local variables. Generally, low-level procedures
should both accept their inputs and return their results through the dummy
argument list of subroutines and function return values. Use of variables
outside the procedure’s local scope often creates application-specific depen-
dencies, which can limit reuse.

■ Using derived types, and their type-bound procedures and procedure com-
ponents. These allow code to be reused and even extended, using object-
oriented techniques. Components within objects can be added, changed,
or removed while limiting the scope of changes in existing code to places
that actually use the changed components.

5. Document all code changes, keeping a history of all code revisions.
Auditability refers mostly to the commentary within the code and to its
revision history. It is quite useful to understand how and why a particular area
changed and to verify that the correct version of a routine is in use. In some
environments, such as in organizations that need to conform to Sarbanes-Oxley
standards (see Reference [68]), it is critical to maintain a revision history. It is
also useful for a program to be able to indicate its own version to a user upon
demand.

Source code control systems are very useful for inserting version numbers into
source code on a per file basis. For example, in one such system, CVS (see
Reference [16]), one can embed the string $Id: $ into a comment line in the
source:

! F i l e v e r s i o n : $ Id : $

The sentinel “Id” is a keyword. When CVS encounters it surrounded by dollar
signs, it expands the line by adding a header when extracting the source file.
The previous line would expand to something like:

! F i l e v e r s i o n : $ Id : v e r s i on mod . f90 , v 1 . 4 2009/02/02
! 02 : 55 : 10 wws Exp $
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GENERAL PRINCIPLES 7

In addition, each change to the file via the source code control system allows
the insertion of commentary describing the change. The text is maintained
for future review.

A version numbering scheme should also be maintained for the program or
library as a whole. Typically these version numbers will use digits separated
by periods indicating major, minor, and bug-fix levels. A major release is one
where the new features are of such significance that a shift in how a user uses
the code may occur. A minor release may signify that features with little impact
to existing use have been added and that a large number of bugs have been
fixed. Sometimes developers release a very small number of changes purely to
fix specific bugs that have been discovered since the previous major or minor
releases.

A common convention is to allow a user to specify an option on the command
line, such as -V or --version, that causes the program to print out its version.
Programs might also print their version on one of the output files or on the
screen. Note that programs can read arguments from the command line with
the get command argument intrinsic procedure.

$ prog1−−v e r s i o n
prog1 ( Elements u t i l i t i e s ) 3 . 1 . 4 $

Additionally, especially in the case of libraries that are used by a number of
applications, it is useful to maintain a module variable within the library
containing the version string. A module procedure can be written to return
the string so that a caller can determine which version of the library is in use.
Likewise, the CVS Id can be placed into a character string that can be extracted
with tools such as the Unix strings command. By doing this you can ensure
that the source file and the object file match.

! wws Exp $

module Vers ion mod
i m p l i c i t none
p r i v a t e
pub l i c : : C h e c k v e r s i o n op t i o n , G e t v e r s i o n

! Because o f space r equ i r emen t s , l i t e r a l c on s t an t
! CVS ID i s shown on 2 l i n e s . CVS w i l l w r i t e i t on
! one l i n e .

characte r ( * ) , parameter : : CVS ID = &
’ $ Id : P r o g F o rAu d i t a b i l i t y . tex , v 1 .16 2010−12−18 &
&23:26:02 c le rman Exp $ ’

characte r ( * ) , parameter : : VERSION STRING= ’3 .1 .4 ’

conta ins
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8 MODERN FORTRAN

f unc t i on Ge t v e r s i o n ( ) r e s u l t ( r e t u r n v a l u e )
characte r ( l en (VERSION STRING ) ) : : r e t u r n v a l u e

r e t u r n v a l u e = VERSION STRING
end funct ion Ge t v e r s i o n

subrout ine Che c k v e r s i o n o p t i o n ( )
characte r (128) : : a r g s t r i n g
i n t ege r : : i

do , i =1, command argument count ( )
c a l l get command argument (number=i , &

va lue=a r g s t r i n g )
i f ( a r g s t r i n g == ’−− v e r s i o n’) then

p r i n t * , ’ Ve r s i on : ’ , G e t v e r s i o n ( )
e x i t

end i f
end do

end subrout ine Che c k v e r s i o n o p t i o n
end module Vers ion mod
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3.

Formatting Conventions

3.1 Source Form
6. Always use free source form.
Fortran 90 introduced free source form. We recommend that it always be used
in new code. Free source form offers a number of advantages over the older
fixed source form code:
■ Free source form is more compatible with modern interactive input devices

than fixed form. The maximum line length is 132 characters, compared to
the older limit of 72 characters. This reduces the possibility of text exceeding
the limit, which could lead the compiler to misinterpret names.

■ Line continuations in free form are performed by using a trailing ampersand
character, &, rather than entering a character in column 6 of the following
line. As an additional visual reminder and safeguard, a leading ampersand,
placed in any column, is also allowed to precede the remaining source code.

■ In fixed source form, the first six columns are reserved for statement labels,
with column 1 also used to indicate comment lines. In modern code,
using structured control statements, statement labels are rare. The first five
columns are therefore wasted because they are rarely used. These last two
features, combined with the next, provide much greater flexibility laying
out the code.

■ In free source form, any statement can begin in column 1. Free source form
always uses the “in-line” comment style, indicated by using an exclamation
mark. In-line comments can begin in any column. Here is the same code
in fixed format and in free format:

C FIXED SOURCE FORM COMMENT
DO 10 , I = 1 , SIZE (DTARR)

. . .
10 CONTINUE

! F ree fo rmat comment
do , i =1, s i z e ( d t a r r ) ! comments beg in i n any column

. . .
end do

■ With free source form, the concept of “significant blanks” was introduced.
In fixed form source, blanks were insignificant in most contexts. This
could lead to code that was very difficult to read. For example, statement
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10 MODERN FORTRAN

or variable names might be split across line continuations. By requiring
blanks to be significant in free form code, code becomes more uniform
and readable, leading to better clarity and reliability. Here is a sample of a
fixed form statement showing what are now considered significant blanks
followed by an equivalent statement without the blanks:

DO ITER = 1 , MAX ITER S
. . .

DO ITER = 1 , MAXITERS

3.2 Case
7. Adopt and use a consistent set of rules for case.

It is essential when discussing case in Fortran to emphasize that it is a case-
insensitive language. The following variations all represent the same variable:
VORTICITY, vorticity , Vorticity , VortiCity . Compilers that, as an optional
feature, permit distinguishing entities based solely on case are not standard;
you should not use this option.

Strictly speaking, prior to Fortran 90, standard-conforming code had to be
written in uppercase letters. The Fortran character set described in the older
standards specified only the 26 uppercase letters.

Beginning with Fortran 90, lowercase letters have been formally permitted,
and all known compiler vendors supported them. However, because so much
old code is still in use, it is still common to encounter code that conforms to
the original restriction. Here is a snippet of code from the LINPACK Users’
Guide (see Reference [20]):

20 M = MOD (N, 4)
IF (M .EQ . 0) GO TO 40
DO 30 I = 1 , M

DY( I ) = DY( I ) + DA * DX( I )
30 CONTINUE

IF (N .LT . 4) RETURN
40 MP1 = M + 1

Nowadays, programmers can use lowercase letters, and the underscore is part
of the character set. The maximum number of characters that can be used
to form a name has grown from the original number of 6, to 31 in Fortran
90/95, to 63 in Fortran 2003. It is now common to see a variable such as
molecular weight.

Even though the language is case-insensitive, you will often see that programs,
especially large ones, are written with specific case conventions. Using different
combinations of case, such as using all one case for certain types of program
entities and the opposite case for others, capitalizing certain types of entities,
or using a consistent set of combinations of uppercase letters and underscores,
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