Index

N, 65
$N(0, 1)$, 57
$N(\mu, \sigma^2)$, 98
σ-field, 458

accreting notional, 429
admissible exercise strategy, see exercise strategy, admissible
almost, 257
almost surely, 99
American, 10
American option, see option, American amortising notional, 429
annualized rates, 302
annuity, 308
anti-thetic sampling, 192
arbitrage, 19–20, 27–29, 429
and bounding option prices, 29–39
arbitrage-free price, 45, 46
arbitrageur, 12–13, 18
Arrow–Debreu security, 152
at-the-forward, 31
at-the-money, 30, 66
auto cap, 429

bank, 12
barrier option, see option, barrier
basis point, 429
basket option, 261
Bermudan option, see option, Bermudan
Bermudan swaption, see swaption, Bermudan
BGM, 429
implementation of, 450–453
BGM model, 322–355
automatic calibration to co-terminal swaptions, 342
long steps, 337
running a simulation, 337–342
BGM/J, 429
BGM/J model, see BGM model
bid-offer spread, 21
Black formula, 173, 310–311
approximate linearity, 356
approximation for swaption pricing under BGM model, 341

Black–Scholes formula, see option, call
Black–Scholes formula for
Black–Scholes density, 188
Black–Scholes equation, 69, 160, 161
for options on dividend-paying assets, 123
higher-dimensional, 271
informal derivation of, 114–116
rigorous derivation, 116–119
solution of, 119–121
with time-dependent parameters, 164
Black–Scholes formula, 65
Black–Scholes model, 74, 113, 430
Black–Scholes price, 19
Black–Scholes model, 76
bond, 4–6, 430
callable, 301
convertible, 7, 430
corporate, 7
government, 1
premium, 2
riskless, 5, 7
zero-coupon, 5, 24–26, 28, 302, 433
Brownian bridge, 230
Brownian motion, 97–100, 101, 107, 142, 260, 430
correlated, 263
higher-dimensional, 261–263
Buffett, Warren, 2
bushy tree, see tree, non-recombining
calibration
to vanilla options using jump-diffusion, 377
call, 301
call option, see option, call
callable bond, see bond, callable
cap, 309, 430
caplet, 309–311, 430
strike of, 309
caption, 326, 430
cash bond, 26, 430
Central Limit theorem, 56, 60
Central Limit Theorem, 64
Central Limit theorem, 278, 463
central method, 238
Index

CEV, see constant elasticity of variance chain rule, 106
for stochastic calculus, 109
characteristic function, 408
Cholesky decomposition, 227
cliquet, 425, 430
call, 425
optional, 426
put, 425
CMS, see swap, constant maturity
co-initial, 317, 340
co-terminal, 317, 340
commodities, 123
complete market, 152, 430
compound optionality, 426
conditional probability, 460
consol, 430
constant elasticity of variance, 113
constant elasticity of variance process, 355
constant maturity swap, see swap, constant maturity
contingent claim, 152, 430
continuously compounding rate, 25, 26
control variate
and pricing of Bermudan swaptions, 351
on a tree, 288
convenience yield, 123
covariance, 466
as a function of spot price in a log-type model, 383
correlation, 466
between forward rates, 321, 335
correlation matrix, 268, 466
cost of carry, 123
coupon, 4, 301, 430
covariance, 466
covariance matrix, 466
and implementing BGM, 343
crash, 10, 86
credit default swap, 23
credit rating, 316, 430
cumulative distribution function, 461
cumulative normal function, 65, 435, 437
default, 1
deflated, 168
Delta, 76, 80, 430
and static replication, 246, 248
Black-Scholes formula for call option, 80
integral expression for, 189
Delta hedging, see hedging, Delta dependent, 461
derivative, 10, 430
credit, 11
weather, 11
Derman–Kani implied tree, 381
deterministic future smile, 244, 426
digital, 430
digital option, see option, digital
dimensionality, 224, 438
dimensionality reduction, 229
discount curve, 431
discretely compounding money market account, 324
displaced diffusion model, 355
distribution
log-normal, see log-normal distribution
diversifiable risk, 431
diversification, 8
dividend, 7, 431
script, 25
dividend rate, 25
dividends
and the Black–Scholes equation, 121–123
drift, 60, 111
of a forward rate under BGM, 330
real-world, 64
Dupire model, 381
dynamic replication, see replication, dynamic
early exercise, 68
equivalent martingale measure
for a tree with jumps, 363
equivalent probability measures, see probability measure, equivalence
European, 10
European contingent claim, 116
exercise, 10
exercise boundary, 289
exercise region, 289
exercise strategy
admissible, 286
expectation, 431, 462
conditional, 155
fat tails, 85, 431, 464
Feynman–Kac theorem, 161
fickle, 377
filtration, 143, 154, 162
first variation, see variation, first
fixed leg, 306
fixed rate, 431
floating, 300
floating leg, 306
floating smile, see smile, floating
dividend, 7, 431
described, 246, 248
floor, 309, 431
described, 246, 248
floorlet, 309, 431
floortion, 326, 431
forward contract, 9, 22, 181, 431
and risk-neutrality, 137
value of, 26
forward price, 26, 31
forward rates, 303–305
forward-rate agreement, 23, 304, 431
Fourier transform, 395, 408
FRA, see forward-rate agreement
free boundary value problem, 290
Gamma, 77, 80, 431
and static replication, 246, 248
Black-Scholes formula for a call option, 80
non-negativity of, 384
Index

Gamma distribution, 402
Gamma function, 402
incomplete, 405
Gaussian distribution, 57, 103
Gaussian random variable
synthesis of, 191
gearing, 300
geometric Brownian motion, 111, 114
gilt, 314
Girsanov transformation, 214
Girsanov’s theorem, 158, 166, 210–213, 368, 390, 431
higher-dimensional, 267–271
Greeks, 77–83, 431
and static replication, 246, 248
computation of
on a tree, 186
of multi-look options, 236–238
heat equation, 119, 120–121
Heath, Jarrow & Morton, 322
hedger, 12–13, 18
hedging, 4, 8, 11, 67–68, 431, 441
and martingale pricing, 162–164
Delta, 18–19, 68, 73, 76, 115, 118, 162
exotic option under jump-diffusion, 375
Gamma, 77
in a one-step tree, 44–45
in a three-state model, 49
in a two-step model, 51
of exotic options, 424
vanilla options in a jump-diffusion world, 372
Vega, 79
hedging strategy, 17–18, 44, 76
stop-loss, 143
hedging, discrete, 76
HJM model, 322
homogeneity, 274, 281, 383
implied volatility, see volatility, implied
importance sampling, 193
in-the-money, 30
incomplete, 431
incomplete market, 50, 361, 367–375, 389, 390
incomplete model, 89
incremental path generation, see path generation, incremental
independent, 461
information, 2, 4, 113, 140–145, 162, 401
conditioning on, 145
insider trading, 3
insurance, 12
inverse cumulative normal function, 192, 435, 436
inverse floater, 359
Ito, 97, 99
Ito calculus
higher-dimensional, 261, 263–266
Ito process, 106, 154
Ito’s Lemma, 106–110
application of, 111–114
multi-dimensional, 264
joint density function, 464
joint law of minimum and terminal value of a
Brownian motion
with drift, 213
without drift, 208
jump-diffusion model, 87, 364–381
and deterministic future smiles, 244
and replication of American options, 293
price of vanilla options as a function of jump
intensity, 374
pricing by risk-neutral evaluation, 364–367
jump-diffusion process, 361
jumps, 86–88
jumps on a tree, 362
Kappa, 79
knock in, 202
knock out, 202
knock-in option, see option, barrier
knock-out option, see option, barrier
kurtosis, 85, 432, 464
law of large numbers, 69, 191, 462
law of the minimum of a Brownian motion drift, 215, 216
law of the unconscious statistician, 463
Leibniz rule, 110
leveraging, 300
LIBID, 432
LIBOR, 302, 315, 432
LIBOR market model, 322
LIBOR-in-arrears, 312–313
LIBOR-in-arrears caplet
pricing by BGM, 326
LIBOR-in-arrears FRA
pricing by BGM, 326
likelihood ratio, 195, 237
liquidity, 21
Lloyds, 6
log-normal distribution, 61
log-normal model, 58
approximation by a tree, see tree, approximating a
log-normal model
for stock price movements, 112
log-type model, 382–385
long, 21, 432
low-discrepancy numbers, 193
the pricing of exotic options, 445–447
lucky paths, 369
marginal distribution, 465
Margrabe option, see option, Margrabe
market efficiency, 2–4
weak, 3, 4, 99
market maker, 74
market model, 432
market price of risk, 89, 112
Markov property, 3, 98, 99
strong, 210
martingale, 129, 145, 432
and no arbitrage, 146
continuous, 154–160
discrete, 146
higher-dimensional, 267
martingale measure, 148
choice of, 376
uniqueness, 150
martingale pricing
and time-dependent parameters, 164–165
based on the forward, 172–175
continuous, 157–160
discrete, 145–154
equivalence to PDE method, 161–162
with dividend-paying assets, 171
martingale representation theorem, 162
maturity, 5
maximal foresight, 296
mean-reverting process, 390
measure change, 368
moment, 432
moment matching, 193
and pricing of Asian options, 231–233
money-market account, 26, 114, 430
moneyness, 385
monotonicity theorem, 27
Monte Carlo simulation, 69, 462
and price of exotic options using a jump-diffusion
model, 379
and pricing of European options, 191
computation of Greeks, 194–195
variance reduction, 192
Moro, 435
mortgage, 301
multi-look option, see option, multi-look
Name, 6
natural payoff, 330
NFLWVR, 132, 135
no free lunch principle, 19
no free lunch with vanishing risk, see NFLWVR
no-arbitrage, 45
non-recombining tree, see tree, non-recombining
normal distribution, see Gaussian distribution, 461
notional, 304
numeraire, 168, 174, 310, 312, 314, 324
change of, 167
numerical integration
and pricing of European options, 187–190
option, 9–12
American, 68, 144, 284, 429
boundary conditions for PDE, 290
lower bounds by Monte Carlo, 293–295
PDE pricing, 289–291
pricing on a tree, 287–289
Index
replication of, 291–293
seller’s price, 297
theoretical price of, 287
upper bounds by Monte Carlo, 295–297
American digital, 219
American put, 219
Asian, 222, 429
pricing by PDE or tree, 233–234
static replication of, 249–251
barrier, 69, 429
definition, 202–204
price of down-and-out call, 217, 218
basket, 261, 429
Bermudan, 284, 429
binary, 429
call, 10, 181, 430
American, 32
Black–Scholes formula for, 65, 160
down-and-in, 202
down-and-out, 202
formula for price in jump-diffusion model, 366, 367
pay-off, 29
perpetual American, 299
pricing under American, 114
chooser, 294
continuous barrier
expectation pricing of, 207–208, 216–219
PDE pricing of, 205–207
static replication of, 244–247, 252–256
static replication of down-and-out put, 244–246
continuous double barrier
static replication, 246–247
digital, 83, 257
call, 83
put, 83
digital call, 181
Black–Scholes formula for price of, 183
digital put, 181
Black–Scholes formula for price of, 183
discrete barrier, 222
static replication of, 247–249
double digital, 130
European, 431
exotic, 10, 437
Monte Carlo, 444–445
pricing under jump-diffusion, 379–381
knock-in, 431
knock-out, 69, 432
Margrabe, 260, 273–275
model-independent bounds on price, 29–39
multi-look, 223
Parisian, 432
path-dependent, 223
and risk-neutral pricing, 223–225
static replication of, 249–251
power call, 182
put, 10, 181, 432
Black–Scholes formula for, 65
pay-off, 30
<table>
<thead>
<tr>
<th>Index</th>
<th>537</th>
</tr>
</thead>
<tbody>
<tr>
<td>quanto</td>
<td>260, 275–280</td>
</tr>
<tr>
<td>static replication of up-and-in put with barrier at strike</td>
<td>251–252</td>
</tr>
<tr>
<td>trigger</td>
<td>433</td>
</tr>
<tr>
<td>vanilla</td>
<td>10</td>
</tr>
<tr>
<td>with multiple exercise dates</td>
<td>284</td>
</tr>
<tr>
<td>out-of-the-money</td>
<td>30</td>
</tr>
<tr>
<td>path dependence</td>
<td>weak</td>
</tr>
<tr>
<td>path generation</td>
<td>226–230</td>
</tr>
<tr>
<td>incremental</td>
<td>228</td>
</tr>
<tr>
<td>using spectral theory</td>
<td>228</td>
</tr>
<tr>
<td>path-dependent exotic option</td>
<td>see option, path-dependent</td>
</tr>
<tr>
<td>path generation</td>
<td>195, 236</td>
</tr>
<tr>
<td>PDE methods and the pricing of European options</td>
<td>195–196</td>
</tr>
<tr>
<td>Poisson process</td>
<td>364</td>
</tr>
<tr>
<td>positive semi-definite</td>
<td>467</td>
</tr>
<tr>
<td>positivity</td>
<td>7, 28</td>
</tr>
<tr>
<td>predictable</td>
<td>162</td>
</tr>
<tr>
<td>predictor-corrector</td>
<td>340</td>
</tr>
<tr>
<td>present valuation</td>
<td>302</td>
</tr>
<tr>
<td>previsible</td>
<td>370</td>
</tr>
<tr>
<td>pricing arbitrage-free</td>
<td>22</td>
</tr>
<tr>
<td>principal</td>
<td>5, 301</td>
</tr>
<tr>
<td>probability risk-neutral</td>
<td>see risk-neutral probability</td>
</tr>
<tr>
<td>probability density function</td>
<td>461</td>
</tr>
<tr>
<td>probability measure</td>
<td>458</td>
</tr>
<tr>
<td>equivalence</td>
<td>147</td>
</tr>
<tr>
<td>product rule for Ito processes</td>
<td>110</td>
</tr>
<tr>
<td>pseudo-square root</td>
<td>468</td>
</tr>
<tr>
<td>put option</td>
<td>see option, put</td>
</tr>
<tr>
<td>put-call parity</td>
<td>30, 65, 67</td>
</tr>
<tr>
<td>put-call symmetry</td>
<td>252–256</td>
</tr>
<tr>
<td>quadratic variation</td>
<td>100</td>
</tr>
<tr>
<td>quanto drift</td>
<td>276</td>
</tr>
<tr>
<td>quanto forward</td>
<td>277</td>
</tr>
<tr>
<td>quanto option</td>
<td>see option, quanto quasi Monte Carlo</td>
</tr>
<tr>
<td>Radon–Nikodym</td>
<td>214</td>
</tr>
<tr>
<td>Radon–Nikodym derivative</td>
<td>213</td>
</tr>
<tr>
<td>random time</td>
<td>88, 143</td>
</tr>
<tr>
<td>random variable</td>
<td>459</td>
</tr>
<tr>
<td>real-world drift</td>
<td>see drift, real-world recombining trees implementing</td>
</tr>
<tr>
<td>reflection principle</td>
<td>208–210</td>
</tr>
<tr>
<td>replication</td>
<td>23, 116</td>
</tr>
<tr>
<td>and dividends</td>
<td>122</td>
</tr>
<tr>
<td>and the pricing of European options</td>
<td>196–198</td>
</tr>
<tr>
<td>classification of methods</td>
<td>257</td>
</tr>
<tr>
<td>dynamic</td>
<td>198, 257</td>
</tr>
<tr>
<td>in a one-step tree</td>
<td>48–49</td>
</tr>
<tr>
<td>in a three-state model</td>
<td>50</td>
</tr>
<tr>
<td>semi-static and jump-diffusion models</td>
<td>381</td>
</tr>
<tr>
<td>static</td>
<td>198</td>
</tr>
<tr>
<td>feeble</td>
<td>257</td>
</tr>
<tr>
<td>mezzo</td>
<td>257</td>
</tr>
<tr>
<td>strong</td>
<td>243, 257</td>
</tr>
<tr>
<td>weak</td>
<td>243, 257</td>
</tr>
<tr>
<td>repo</td>
<td>315</td>
</tr>
<tr>
<td>restricted stochastic-volatility model</td>
<td>see Dupire model</td>
</tr>
<tr>
<td>reverse option</td>
<td>320</td>
</tr>
<tr>
<td>reversing pair</td>
<td>319</td>
</tr>
<tr>
<td>Rho</td>
<td>79</td>
</tr>
<tr>
<td>rho</td>
<td>432</td>
</tr>
<tr>
<td>risk</td>
<td>1–2, 8, 9</td>
</tr>
<tr>
<td>diversifiable</td>
<td>8–9</td>
</tr>
<tr>
<td>purity of</td>
<td>9</td>
</tr>
<tr>
<td>risk neutral</td>
<td>19</td>
</tr>
<tr>
<td>risk premium</td>
<td>46, 60, 64, 111, 119, 432</td>
</tr>
<tr>
<td>risk-neutral distribution</td>
<td>64</td>
</tr>
<tr>
<td>risk-neutral density as second derivative of call price</td>
<td>137</td>
</tr>
<tr>
<td>in Black–Scholes world</td>
<td>139</td>
</tr>
<tr>
<td>risk-neutral expectation</td>
<td>64</td>
</tr>
<tr>
<td>risk-neutral measure</td>
<td>148, 432</td>
</tr>
<tr>
<td>completeness</td>
<td>166</td>
</tr>
<tr>
<td>existence of</td>
<td>129</td>
</tr>
<tr>
<td>uniqueness</td>
<td>166</td>
</tr>
<tr>
<td>risk-neutral pricing</td>
<td>64–65, 140</td>
</tr>
<tr>
<td>higher-dimensional</td>
<td>267–271</td>
</tr>
<tr>
<td>risk-neutral probability</td>
<td>47, 52, 54, 59, 128</td>
</tr>
<tr>
<td>risk-neutral valuation</td>
<td>59</td>
</tr>
<tr>
<td>in a one-step tree</td>
<td>45–48</td>
</tr>
<tr>
<td>in a three-state model</td>
<td>50</td>
</tr>
<tr>
<td>in jump models</td>
<td>86</td>
</tr>
<tr>
<td>two-step model</td>
<td>52</td>
</tr>
<tr>
<td>riskless</td>
<td>1</td>
</tr>
<tr>
<td>riskless asset</td>
<td>28</td>
</tr>
<tr>
<td>Rogers method for upper bounds by Monte Carlo</td>
<td>295, 350</td>
</tr>
<tr>
<td>sample space</td>
<td>458</td>
</tr>
<tr>
<td>self-financing portfolio</td>
<td>28, 116–117, 128, 163, 369</td>
</tr>
<tr>
<td>dynamic</td>
<td>28</td>
</tr>
<tr>
<td>share</td>
<td>6–7, 432</td>
</tr>
<tr>
<td>share split</td>
<td>57</td>
</tr>
<tr>
<td>short</td>
<td>432</td>
</tr>
<tr>
<td>short rate</td>
<td>25, 433</td>
</tr>
<tr>
<td>short selling</td>
<td>21</td>
</tr>
<tr>
<td>simplex method</td>
<td>295</td>
</tr>
<tr>
<td>skew</td>
<td>433, 464</td>
</tr>
<tr>
<td>smile</td>
<td>74–77</td>
</tr>
<tr>
<td>displaced-diffusion</td>
<td>356, 420</td>
</tr>
<tr>
<td>equity</td>
<td>421</td>
</tr>
<tr>
<td>floating</td>
<td>88, 385, 407, 413–414</td>
</tr>
<tr>
<td>foreign exchange</td>
<td>413</td>
</tr>
<tr>
<td>FX</td>
<td>424</td>
</tr>
<tr>
<td>interest-rate</td>
<td>355–357, 424</td>
</tr>
<tr>
<td>jump-diffusion</td>
<td>378, 415</td>
</tr>
<tr>
<td>sticky</td>
<td>88, 413–414</td>
</tr>
<tr>
<td>sticky-delta</td>
<td>413</td>
</tr>
</tbody>
</table>
smile (cont.)
 stochastic volatility, 398, 416
time dependence, 414–415
 Variance Gamma, 406, 417
smile dynamics
 Derman–Kani, 420
 displaced-diffusion, 420
 Dupire model, 420
equity, 421
FX, 424
interest-rate, 424
jump-diffusion, 415
market, 413–415
model, 415–421
 stochastic volatility, 416
 Variance Gamma, 417
smoothing operator, 120
spectral theory, 228
speculator, 12, 18
split
 share, see share split
 spot price, 31
 square root
 of a matrix, 467
 standard error, 191
 standard deviation, 463
static replication, see replication, static
stepping methods for Monte Carlo, 439
stochastic, 433
 stochastic calculus, 97
 stochastic differential equation, 105
 for square of Brownian motion, 107
stochastic process, 102–106, 141
stochastic volatility, 88, 389
 and risk-neutral pricing, 390–393
 implied, 400
 pricing by Monte Carlo, 391–394
 pricing by PDE and transform methods, 395–398
stochastic volatility smiles, see smile, stochastic
stock, 6–7, 433
stop loss hedging strategy, 18
stopping time, 143, 286, 346
straddle, 182, 257
strike, 10, 433
 strong static replication, see replication, static, strong
sub-replication, 369–375
 super-replication, 369–375
swap, 300, 305–309, 433
 constant maturity, 328
 payer’s, 306, 432
 pricing by BGM, 323
 receiver’s, 306, 432
 value of, 308
swap rate, 433
swaption, 301, 309, 433
 Bermudan, 301, 310, 342
 and factor reduction, 352–355
 lower bound via global optimization, 347
variation, 157, 367
 first, 99, 367, 409
quadratic, 368
second, see variation, quadratic
Vega, 79, 82, 433
 integral expression for, 189
Vega hedging, see hedging, Vega
volatility, 60, 65, 66, 73–74, 111
 Black–Scholes formula as linear function of, 66
 forward, 426
 implied, 73, 197
 instantaneous curve, 320, 333
root-mean-square, 320
time-dependence and tree-pricing, 294
trading of, 73
volatility surface, 363
weak static replication, see replication, static, weak
Wiener measure, 141, 142
yield, 5, 24, 433
 annualized, 25
yield curve, 319, 433
zero-coupon bond, see bond, zero-coupon