THE CONCEPTS AND PRACTICE OF MATHEMATICAL FINANCE Second Edition

Mathematics, Finance and Risk

Editorial Board

Mark Broadie, Graduate School of Business, Columbia University Sam Howison, Mathematical Institute, University of Oxford Neil Johnson, Centre for Computational Finance, University of Oxford George Papanicolaou, Department of Mathematics, Stanford University

Modern finance in theory and practice relies absolutely on mathematical models and analysis. It draws on and extends classical applied mathematics, stochastic and probabilistic methods, and numerical techniques to enable models of financial systems to be constructed, analysed and interpreted. This methodology underpins applications to derivatives pricing for equities and fixed income products, assetliability modelling, volatility, risk management, credit risk, insurance analysis and many more. This new series will consist of books that explain the processes and techniques of the new applied mathematics, and how to use them to model financial systems and to understand the underlying phenomena and forces that drive financial markets.

The audience for mathematical finance ranges from mathematics and probability through econophysics to financial economics, and the series will reflect this breadth of appeal, while maintaining a firm footing in the tradition of applied mathematics. Books will be pedagogical in style, enabling them to be used for teaching in universities, business schools and financial institutions, and sufficiently self-contained for stand-alone use. Mathematical techniques will be motivated by examples and their use illustrated through applications, and complemented by computation.

THE CONCEPTS AND PRACTICE OF MATHEMATICAL FINANCE

Second Edition

M. S. JOSHI University of Melbourne

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

www.cambridge.org Information on this title: www.cambridge.org/9780521514088

© M. S. Joshi 2003

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2003 Reprinted 2004 Second Edition 2008

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Joshi, M. S. (Mark Suresh), 1969– The concepts and practice of mathematical finance / M. S. Joshi. p. cm. – (Mathematics, finance and risk) Includes bibliographical references and index. ISBN 0 521 82355 2

Derivative securities – Prices – Mathematical models.
Options (Finance) – Prices – Mathematical models.
Interest rates – Mathematical models.
Finance – Mathematical models.
Investments – Mathematical model

HG6024.A3J67 2003 332'.01'51 - dc22 2003055594

ISBN 978-0-521-51408-8 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To My Parents

Contents

Preface		<i>page</i> xiv	
Acknowledgements			xviii
1	Risk		1
	1.1	What is risk?	1
	1.2	Market efficiency	2
	1.3	The most important assets	4
	1.4	Risk diversification and hedging	8
	1.5	The use of options	9
	1.6	Classifying market participants	12
	1.7	Key points	13
	1.8	Further reading	14
	1.9	Exercises	14
2	Pricing methodologies and arbitrage		16
	2.1	Some possible methodologies	16
	2.2	Delta hedging	18
	2.3	What is arbitrage?	19
	2.4	The assumptions of mathematical finance	20
	2.5	An example of arbitrage-free pricing	22
	2.6	The time value of money	24
	2.7	Mathematically defining arbitrage	27
	2.8	Using arbitrage to bound option prices	29
	2.9	Conclusion	39
	2.10	Key points	39
	2.11	Further reading	39
	2.12	Exercises	40
3	Trees	and option pricing	44
	3.1	A two-world universe	44
	3.2	A three-state model	49

vii	i	Contents	
	3.3	Multiple time steps	50
	3.4	Many time steps	53
	3.5	A normal model	55
	3.6	Putting interest rates in	58
	3.7	A log-normal model	60
	3.8	Consequences	68
	3.9	Summary	70
	3.10	Key points	70
	3.11	Further reading	71
	3.12	Exercises	71
4	Practi	calities	73
	4.1	Introduction	73
	4.2	Trading volatility	73
	4.3	Smiles	74
	4.4	The Greeks	77
	4.5	Alternative models	85
	4.6	Transaction costs	90
	4.7	Key points	90
	4.8	Further reading	91
	4.9	Exercises	91
5	The I	to calculus	97
	5.1	Introduction	97
	5.2	Brownian motion	97
	5.3	Quadratic variation	100
	5.4	Stochastic processes	102
	5.5	Ito's lemma	106
	5.6	Applying Ito's lemma	111
	5.7	An informal derivation of the Black–Scholes equation	114
	5.8	Justifying the derivation	116
	5.9	Solving the Black–Scholes equation	119
	5.10	Dividend-paying assets	121
	5.11	Key points	123
	5.12	Further reading	125
(5.13 D:1	Exercises	125
6	Risk i	neutrality and martingale measures	127
	0.1	Pian Lutur desting	127
	6.2	Introduction	128
	0.5	The concern of information	129
	0.4	Discuste martin cale mining	140
	6.5	Discrete martingale pricing	145

		Contents	ix
	6.6	Continuous martingales and filtrations	154
	6.7	Identifying continuous martingales	156
	6.8	Continuous martingale pricing	157
	6.9	Equivalence to the PDE method	161
	6.10	Hedging	162
	6.11	Time-dependent parameters	164
	6.12	Completeness and uniqueness	166
	6.13	Changing numeraire	167
	6.14	Dividend-paying assets	171
	6.15	Working with the forward	172
	6.16	Key points	175
	6.17	Further reading	176
	6.18	Exercises	176
7	The p	practical pricing of a European option	181
	7.1	Introduction	181
	7.2	Analytic formulae	182
	7.3	Trees	183
	7.4	Numerical integration	187
	7.5	Monte Carlo	191
	7.6	PDE methods	195
	7.7	Replication	196
	7.8	Key points	198
	7.9	Further reading	198
	7.10	Exercises	199
8	Conti	inuous barrier options	202
	8.1	Introduction	202
	8.2	The PDE pricing of continuous barrier options	205
	8.3	Expectation pricing of continuous barrier options	207
	8.4	The reflection principle	208
	8.5	Girsanov's theorem revisited	210
	8.6	Joint distribution	213
	8.7	Pricing continuous barriers by expectation	216
	8.8	American digital options	219
	8.9	Key points	220
	8.10	Further reading	220
	8.11	Exercises	220
9	Multi	i-look exotic options	222
	9.1	Introduction	222
	9.2	Risk-neutral pricing for path-dependent options	223
	9.3	Weak path dependence	225

Х		Contents	
	9.4	Path generation and dimensionality reduction	226
	9.5	Moment matching	231
	9.6	Trees, PDEs and Asian options	233
	9.7	Practical issues in pricing multi-look options	234
	9.8	Greeks of multi-look options	236
	9.9	Key points	239
	9.10	Further reading	239
	9.11	Exercises	240
10	Static 1	replication	243
	10.1	Introduction	243
	10.2	Continuous barrier options	244
	10.3	Discrete barriers	247
	10.4	Path-dependent exotic options	249
	10.5	The up-and-in put with barrier at strike	251
	10.6	Put-call symmetry	252
	10.7	Conclusion and further reading	256
	10.8	Key points	258
	10.9	Exercises	259
11	Multip	le sources of risk	260
	11.1	Introduction	260
	11.2	Higher-dimensional Brownian motions	261
	11.3	The higher-dimensional Ito calculus	263
	11.4	The higher-dimensional Girsanov theorem	267
	11.5	Practical pricing	272
	11.6	The Margrabe option	273
	11.7	Quanto options	275
	11.8	Higher-dimensional trees	277
	11.9	Key points	280
	11.10	Further reading	281
	11.11	Exercises	281
12	Option	is with early exercise features	284
	12.1	Introduction	284
	12.2	The tree approach	287
	12.3	The PDE approach to American options	289
	12.4	American options by replication	291
	12.5	American options by Monte Carlo	293
	12.6	Upper bounds by Monte Carlo	295
	12.7	Key points	297
	12.8	Further reading	297
	12.9	Exercises	298

		Contents	xi
13	Interes	st rate derivatives	300
	13.1	Introduction	300
	13.2	The simplest instruments	302
	13.3	Caplets and swaptions	309
	13.4	Curves and more curves	314
	13.5	Key points	316
	13.6	Further reading	317
	13.7	Exercises	317
14	The pr	icing of exotic interest rate derivatives	319
	14.1	Introduction	319
	14.2	Decomposing an instrument into forward rates	323
	14.3	Computing the drift of a forward rate	330
	14.4	The instantaneous volatility curves	333
	14.5	The instantaneous correlations between forward	
		rates	335
	14.6	Doing the simulation	337
	14.7	Rapid pricing of swaptions in a BGM model	340
	14.8	Automatic calibration to co-terminal swaptions	342
	14.9	Lower bounds for Bermudan swaptions	345
	14.10	Upper bounds for Bermudan swaptions	349
	14.11	Factor reduction and Bermudan swaptions	352
	14.12	Interest-rate smiles	355
	14.13	Key points	358
	14.14	Further reading	358
	14.15	Exercises	359
15	Incom	plete markets and jump-diffusion processes	361
	15.1	Introduction	361
	15.2	Modelling jumps with a tree	362
	15.3	Modelling jumps in a continuous framework	364
	15.4	Market incompleteness	367
	15.5	Super- and sub-replication	369
	15.6	Choosing the measure and hedging exotic options	375
	15.7	Matching the market	377
	15.8	Pricing exotic options using jump-diffusion	
		models	379
	15.9	Does the model matter?	381
	15.10	Log-type models	382
	15.11	Key points	385
	15.12	Further reading	386
	15.13	Exercises	387

Cambridge University Press
978-0-521-51408-8 - The Concepts and Practice of Mathematical Finance, Second Edition
M. S. Joshi
Frontmatter
More information

xii		Contents	
16	Stocha	stic volatility	389
	16.1	Introduction	389
	16.2	Risk-neutral pricing with stochastic-volatility models	390
	16.3	Monte Carlo and stochastic volatility	391
	16.4	Hedging issues	393
	16.5	PDE pricing and transform methods	395
	16.6	Stochastic volatility smiles	398
	16.7	Pricing exotic options	398
	16.8	Key points	399
	16.9	Further reading	399
	16.10	Exercises	400
17	Varian	ce Gamma models	401
	17.1	The Variance Gamma process	401
	17.2	Pricing options with Variance Gamma models	404
	17.3	Pricing exotic options with Variance Gamma models	407
	17.4	Deriving the properties	408
	17.5	Key points	410
	17.6	Further reading	410
	17.7	Exercises	411
18	Smile	dynamics and the pricing of exotic options	412
	18.1	Introduction	412
	18.2	Smile dynamics in the market	413
	18.3	Dynamics implied by models	415
	18.4	Matching the smile to the model	421
	18.5	Hedging	424
	18.6	Matching the model to the product	425
	18.7	Key points	427
	18.8	Further reading	428
	Appen	dix A Financial and mathematical jargon	429
	Appen	dix B Computer projects	434
	B.1	Introduction	434
	B.2	Two important functions	435
	B.3	Project 1: Vanilla options in a Black–Scholes world	437
	B.4	Project 2: Vanilla Greeks	440
	B.5	Project 3: Hedging	441
	B.6	Project 4: Recombining trees	443
	B.7	Project 5: Exotic options by Monte Carlo	444
	B.8	Project 6: Using low-discrepancy numbers	445
	B.9	Project 7: Replication models for continuous barrier options	447
	B.10	Project 8: Multi-asset options	448

	Contents	xiii
B.11	Project 9: Simple interest-rate derivative pricing	448
B.12	Project 10: LIBOR-in-arrears	449
B.13	Project 11: BGM	450
B.14	Project 12: Jump-diffusion models	454
B.15	Project 13: Stochastic volatility	455
B.16	Project 14: Variance Gamma	456
Apper	ndix C Elements of probability theory	458
C.1	Definitions	458
C.2	Expectations and moments	462
C.3	Joint density and distribution functions	464
C.4	Covariances and correlations	466
Apper	ndix D Order notation	469
D.1	Big \mathcal{O}	469
D.2	Small o	471
Apper	idix E Hints and answers to exercises	472
References		526
Index		533

Preface

There are many different emphases and approaches to presenting the basics of mathematical finance. My objective in this book is to do two things: the first is to impart to the reader a conceptual understanding of the basic ideas in mathematical finance. The second is to show the reader how these ideas are translated into practicalities.

There is an aphorism that goes "Don't think of the problem, think of the solution." I believe that this aphorism is often taken too much to heart when presenting mathematical material: the solution is often presented without stating the problem. We therefore spend a couple of chapters going over the basic ideas of finance. In particular, we first introduce the concept of risk in order to give the reader an understanding of why risk is important before proving the surprising and fundamental result that ignoring risk is the key to pricing many products, which comes later in the book.

There are at least three approaches to mathematical finance, trees, PDEs and martingales. Rather than plump for one of these, we try to examine each problem from the viewpoint of each one and attempt to use the multiple approaches to emphasize the underlying ideas.

Mathematical finance is a burgeoning field and no book can cover everything, nor should it try to do so. My guiding principle has been to include what I think a good quant ought to know. Inevitably many topics are not covered in depth or at all. Where possible, I have tried to indicate other textbooks which cover the topics and where not possible the original papers. Let me stress at this point, that this is a text book not a research letter so the absence of a reference does not mean that I believe a result is new. However, on the more cutting-edge topics I have tried to indicate the original papers. If any reader is offended by the lack of a reference my apologies and please let me know for the second edition. Three books which are very strong on references are [42], [79] and [96].

Preface

After introducing risk, we move on in Chapter 2 to the concept of arbitrage which is the fundamental idea of modern derivatives pricing theory. The principle of no arbitrage is then used to develop model-free bounds on option prices, and to show that there exist certain relationships between option prices.

To pass beyond bounds to definite prices requires the introduction of a model of how asset prices change. Although a fundamental assumption is the random character of asset price movements, one must model the nature of this randomness in order to develop pricing models. In Chapter 3, we introduce the simplest of models: the binomial tree. The binomial tree is an essentially discrete model which posits that in each time period the asset moves up or down by a fixed amount. We analyze pricing on binomial trees from various points of view including replication, risk-neutral pricing and hedging. We examine the surprising result that the probabilities underlying the asset's movements have little effect on the price of options. We then see how this discrete model can be used as an approximation to a continuous model, and we deduce the Black–Scholes formula for the price of a call option via a limiting argument.

Having developed the Black–Scholes formula, we then discuss in Chapter 4 its flaws and how these flaws affect its use in practice. This chapter is very much a foretaste for chapters near the end of the book where we study alternative models of price evolution which try to compensate for the shortcomings of the Black– Scholes model.

In Chapter 5, we step up a mathematical gear and introduce the Ito calculus. With this calculus we introduce the geometric Brownian motion model of stock price evolution and deduce the Black–Scholes equation. We then show how the Black–Scholes equation can be reduced to the heat equation. This yields a derivation of the Black–Scholes formula.

In Chapter 6, we step up another mathematical gear and this is the most mathematically demanding chapter. We introduce the concept of a martingale in both continuous and discrete time, and use martingales to examine the concept of riskneutral pricing. We commence by showing that option prices determine synthetic probabilities in the context of a single time horizon model. We then move on to study discrete pricing in martingale terms. Having motivated the definitions using the discrete case, we move on to the continuous case, and show how martingales can be used to develop arbitrage-free prices in the continuous framework. We show that the Black–Scholes PDE can be found as a consequence of the martingale method. We then move on to studying changes of numeraire and market completeness.

After the rigours of Chapter 6, we shift back to the practical in Chapter 7. In this chapter, we examine how the price of European option can be developed using the

xvi

Preface

various possible pricing approaches. In particular, we discuss analytic formulas, trees, Monte Carlo, numeric integration, PDEs and replication.

In Chapter 8, we study the pricing of the simplest of exotic options, the continuous barrier option, and develop analytic formulas for its price in the Black–Scholes world using both PDE and martingale techniques. As part of the study, we examine the concept of change of measure and the reflection principle.

In Chapter 9, we commence the study of non-vanilla options by analyzing the pricing of path-dependent exotic options depending on the value of the underlying at a finite number of times. We concentrate on Asian options and discrete barrier options for concreteness. We discuss pricing using Monte Carlo and PDE methods. We also look at the computation of Greeks by Monte Carlo.

In Chapter 10, we study the use of static replication as a tool for pricing and hedging. Under a variety of assumptions, we examine the replication of continuous barrier options, discrete barrier options, and general path-dependent exotic options.

In Chapter 11, we extend the theory to cope with several sources of uncertainty and develop pricing models which can cope with derivatives whose price depends on the price behaviour of several assets. As applications of the theory, we study the pricing of Margrabe options and quanto options.

We look at how to introduce early optionality in Chapter 12. We discuss the use of tree and PDE methods before looking at the difficulties involved in pricing using Monte Carlo. We develop methods for both lower and upper bounds using Monte Carlo.

We shift our emphasis in Chapter 13 to look at the pricing of simple interest rate derivatives. We introduce forward-rate agreements and swaps, and their optional analogues the caplet and the swaption. We develop pricing formulas under simple assumptions.

In Chapter 14, we study the pricing of exotic interest rate derivatives using the LIBOR market model. Our study includes both calibration and implementation. This chapter draws on a lot of what has gone before, and we finish up with an examination of the pricing of Bermudan swaptions by Monte Carlo.

We commence our study of alternative pricing models in Chapter 15. Here we analyze the Merton jump-diffusion model and develop a pricing formula. We also discuss the additional issues raised by pricing in a model that does not allow perfect hedging.

We continue our study of alternative models in Chapter 16 where we introduce stochastic volatility. We develop pricing approaches using PDE and Monte Carlo techniques for vanilla and exotic options.

In Chapter 17, we introduce the Variance Gamma model and use it to study the pricing of vanilla and exotic options.

To round off the main part of the book, we finish with a chapter on the philosophical and practical issues inherent in using sophisticated models to price

Preface

xvii

exotic options. We look at the relationship between models and smile dynamics, and compare these dynamics to those found in the market. We also see that for certain products there are features which are crucial to capture.

Preface to the Second Edition

It is now four years since the first edition appeared, and almost six since the main draft was finished. Perhaps, the biggest change during those years is the plethora of books on financial mathematics that have been published. When I commenced writing *Concepts* there was only a handful, and it was clear that there was room for a fresh approach which motivated me to write the book. Now every reasonable approach has been tackled at least once, and often several times. Yet *Concepts* has continued to be successful, perhaps because of its unique blend of mathematics and practicality.

Whilst the discipline of financial mathematics has advanced greatly in six years, the basics that an incomer to the field needs to know have not changed hugely. The main difference is that banks have much higher expectations of entry-level candidates. In 1999, demonstration of strong mathematics skills and the ability to derive the Black–Scholes equation was enough to get a job; now many candidates have Masters in Financial Engineering, sometimes as well as PhDs in other fields. Yet the material covered here plus programming skills is still sufficient to land that first job.

For that reason, in this edition, there has been a conscious decision not to include new topics. Instead, the emphasis has been placed on clarifying old topics, introducing extra references to new material and books, and on the exercises. In particular, following feedback from my students at the University of Melbourne, over fifty new exercises have been added and detailed solutions have been included for these. In addition, full solutions have been included for most exercises in the early chapters where previously only hints had been given.

New topics have instead been relegated to a sequel *More Mathematical Finance* which will, I hope, appear in the not too distant future. It will adopt a similar style but go into more details on advanced topics.

The web site for this book continues to be

www.markjoshi.com/concepts

There is now a bulletin board there: I encourage you to visit this and ask questions about mathematical finance as explained in this and other books.

Mark Joshi Melbourne, January 2008

Acknowledgements

Writing this book has been a project of vastly greater magnitude than I contemplated when I started out with the objective of writing a book that stressed the ideas of mathematical finance more than the mathematics. I am grateful to the Royal Bank of Scotland for providing a stimulating environment in which to learn, study and do mathematical finance. My views on and understanding of the topic have come from daily discussions with current and former members of the Group Risk Management Quantitative Research Centre including Chris Hunter, Peter Jäckel, Dherminder Kainth, Jan Kwiatkowski and Jochen Theis, and particularly Riccardo Rebonato. I am also grateful to numerous people for their many comments on the manuscript, particularly to Alex Barnard, Dherminder Kainth, Alan Lewis, Sukhdeep Mahal, Riccardo Rebonato and Jochen Theis. David Tranah, my editor at Cambridge University Press, has done a careful job of editing and has succeeded in removing the worst quirks in my style. My wife has been very supportive during a project that at times seemed neverending.