The study of computational processes based on the laws of quantum mechanics has led to the discovery of new algorithms, cryptographic techniques, and communication primitives. This book explores quantum computation from the perspective of the branch of theoretical computer science known as semantics, as an alternative to the more well-known studies of algorithmics, complexity theory, and information theory. It collects chapters from leading researchers in the field, discussing the theory of quantum programming languages, logics and tools for reasoning about quantum systems, and novel approaches to the foundations of quantum mechanics.

This book is suitable for graduate students and researchers in quantum information and computation, as well as those in semantics, who want to learn about a new field arising from the application of semantic techniques to quantum information and computation.

Simon Gay is a Senior Lecturer in the Department of Computing Science at the University of Glasgow. Prior to taking his current position, he worked as a research associate at Imperial College London, where he also earned his Ph.D. in computer science, and as a lecturer at Royal Holloway, University of London.

Ian Mackie earned his M.Sc. and Ph.D. degrees in computer science at Imperial College London. He is editor-in-chief of an undergraduate textbook series and coauthor of an advanced textbook on proof theory and automated deduction.
Semantic Techniques in Quantum Computation

Edited by

SIMON GAY

IAN MACKIE
Contents

Contributors

Preface

1 No-Cloning in Categorical Quantum Mechanics
 Samson Abramsky
 1

2 Classical and Quantum Structuralism
 Bob Coecke, Éric Oliver Paquette, and Dusko Pavlovic
 29

3 Generalized Proof-Nets for Compact Categories with Biproducts
 Ross Duncan
 70

4 Quantum Lambda Calculus
 Peter Selinger and Benoît Valiron
 135

5 The Quantum IO Monad
 Thorsten Altenkirch and Alexander S. Green
 173

6 Abstract Interpretation Techniques for Quantum Computation
 Philippe Jorrand and Simon Perdrix
 206

7 Extended Measurement Calculus
 Vincent Danos, Elham Kashefi, Prakash Panangaden, and Simon Perdrix
 235

8 Predicate Transformer Semantics of Quantum Programs
 Mingsheng Ying, Runyao Duan, Yuan Feng, and Zhengfeng Ji
 311

9 The Structure of Partial Isometries
 Peter Hines and Samuel L. Braunstein
 361

10 Temporal Logics for Reasoning about Quantum Systems
 PauloMateus,JaimeRamos,AmilcarSernadas,andCristinaSernadas
 389

11 Specification and Verification of Quantum Protocols
 Simon J. Gay, Rajagopal Nagarajan, and Nikolaos Papanikolaou
 414

Index

v
Contributors

Samson Abramsky
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Thorsten Altenkirch
School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

Samuel L. Braunstein
Department of Computer Science, University of York, Heslington, York YO10 5DD, UK

Bob Coecke
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Vincent Danos
School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, UK

Runyao Duan
Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, City Campus, 15 Broadway, Ultimo, NSW 2007, Australia; and State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Ross Duncan
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
Yuan Feng
Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, City Campus, 15 Broadway, Ultimo, NSW 2007, Australia; and State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Simon J. Gay
Department of Computing Science, University of Glasgow, Sir Alwyn Williams Building, Lilybank Gardens, Glasgow G12 8QQ, UK

Alexander S. Green
School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

Peter Hines
Department of Computer Science, University of York, Heslington, York YO10 5DD, UK

Zhengfeng Ji
Perimeter Institute for Theoretical Physics, 31 Caroline Street N., Waterloo, Ontario, Canada

Philippe Jorrand
Laboratoire d’Informatique de Grenoble, 220 me de la Chimie, 38400 Saint Martin d’Hères, France

Elham Kashefi
School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, UK

Paulo Mateus
Security and Quantum Information Group, Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Rajagopal Nagarajan
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

Prakash Panangaden
School of Computer Science, McGill University, 3480 University Street, Montréal, Québec H3A 2A7, Canada

Nikolaos Papanikolaou
International Digital Laboratory, WMG, University of Warwick, Coventry CV4 7AL, UK
Contributors

Éric Oliver Paquette
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Dusko Pavlovic
Kestrel Institute, 3260 Hillview Avenue, Palo Alto, California 94304, USA; and Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Simon Perdrix
School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, UK; and Laboratoire PPS, Université Paris Diderot-Paris 7, Case 7014, 75205 Paris Cedex 13, France

Jaime Ramos
Security and Quantum Information Group, Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Peter Selinger
Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada

Amílcar Sernadas
Security and Quantum Information Group, Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Cristina Sernadas
Security and Quantum Information Group, Instituto de Telecomunicações and Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Benoît Valiron
INRIA and Laboratoire d’Informatique, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Mingsheng Ying
Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, City Campus, 15 Broadway, Ultimo, NSW 2007, Australia; and State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
The idea of quantum computation, in the algorithmic sense, originated from the suggestion by Feynman (1982) that a computer based on the principles of quantum mechanics might be capable of efficiently simulating quantum systems of interest to physicists; such simulation seems to be very difficult with classical computers. Feynman’s suggestion was followed up by Deutsch (1985), who introduced the notion of the quantum Turing machine and investigated the possible computational power of physically realizable computers. He showed that a specific problem, now known as Deutsch’s problem, can be solved more efficiently by a quantum algorithm than by a classical algorithm. Several years later, Shor (1994) discovered efficient quantum algorithms for two important practical problems – integer factorization and the “discrete logarithm” problem – and shortly afterwards, Grover (1996) discovered an efficient quantum algorithm for unstructured searching. Since then, quantum algorithmics and quantum complexity theory have developed into substantial and active research fields.

Meanwhile, the principles of quantum mechanics were being used as the foundation for a new approach to cryptography. Bennett and Brassard (1984) defined a protocol for key distribution whose security is guaranteed by the laws of quantum theory. Their system built on earlier work by Wiesner (1983), which remained unpublished until several years after its conception. We regard quantum cryptography as an aspect of quantum computation, in particular distributed quantum computation; alternatively, both quantum algorithmics and quantum cryptography can be viewed as branches of quantum information processing.

Although Deutsch had observed in 1985 that “quantum computers raise interesting questions for the design of programming languages” (Deutsch 1985), it took some time for computing scientists to begin to rise to the challenge. Knill (1996) introduced a structured pseudocode for quantum algorithms, as an alternative to circuit diagrams; later, Ömer (1998) began the systematic design of an imperative quantum programming language. Similar ideas, although not as extensively developed, had also been investigated by Baker (1996). An alternative approach, based
on λ-calculus, was introduced by Maymin (1996); the λ-calculus approach was also followed by Van Tonder (2004). Another early influential project was that of Sanders and Zuliani (2000).

During the next few years there was a rapid increase in interest in quantum computation from the research community in the theory of programming languages. Broadly speaking we refer to this community as the semantic side of theoretical computing science, in distinction to the algorithmic and complexity-theoretic side. Its interests encompass programming language semantics, type theory, semantics-based program analysis, and formal specification and verification of computational systems. There is a particular emphasis on compositional reasoning and connections with formal (and often nonclassical) logics. In relation to quantum computation, the logical and type-theoretic dimension of this community’s activity had been foreshadowed by Pratt (1992) and Wehr (1996) but was given prominence by Abramsky and Coecke (2003, 2004).

A more comprehensive overview and a complete bibliography can be found in the survey by Gay (2006). By 2003 there was enough activity for Peter Selinger to organize a workshop on Quantum Programming Languages as part of the Fields Institute Summer School in Logic and Computation at the University of Ottawa. This meeting, as well as Selinger’s own research (Selinger 2004), was influential in drawing more semanticists into quantum computation. Several of the speakers have written or coauthored chapters for the present volume. The QPL workshops have flourished as an annual series of meetings; more recently the scope has broadened and the title has changed to “Quantum Physics and Logic.”

With this background, and noting that a substantial part of the activity in the area was taking place in the UK, in 2006 we obtained funding from the UK Engineering and Physical Sciences Research Council (EPSRC) for a research network on Semantics of Quantum Computation (Gay and Mackie 2006–2009), known informally as QNET. Through grants EP/E00623X/1 and EP/E006833/1, the network provided funding for travel within the UK and for international research visits and conference attendance, in order to build a research community. Membership of the network has grown significantly, and three successful workshops have been held, in Glasgow (2006), London (2007), and Edinburgh (2008). A final workshop will take place in Oxford at the end of 2009. Many members of QNET are also involved in the European Union FP6 STREP project “QICS: Foundational Structures in Quantum Information and Computation” (Coecke 2007–2009), which has broadly similar themes.

This volume provides a snapshot of research on the topics covered by QNET. We selected the authors in order to give complete coverage of the field; many, although by no means all, are members of QNET. Some of the chapters describe novel research, not published elsewhere, while others draw on several of their authors’ publications to provide a coherent picture of recent research on a particular topic. We followed a process whereby authors submitted draft versions of their chapters,
which were reviewed in order to provide feedback before preparation of the final version. In general, each chapter was reviewed by an author of another chapter and by an independent reviewer.

The first three chapters are set within the category-theoretic framework for quantum mechanics introduced by Abramsky and Coecke (2004). In Chapter 1, Samson Abramsky gives a category-theoretic analysis of the “no-cloning” property of quantum mechanics, which prevents arbitrary quantum information from being copied. The topic of Chapter 2, by Bob Coecke, Eric Paquette, and Dusko Pavlovic, is the representation and structure of classical data, which can be freely copied, within categorical quantum mechanics. Ross Duncan, in Chapter 3, further develops the graphical calculus that has been a feature of categorical quantum mechanics from the beginning, showing how it can include reasoning about measurement.

The next five chapters apply semantic techniques in several ways. Peter Selinger and Benoît Valiron, in Chapter 4, present a quantum λ-calculus. They describe an operational semantics, a category-theoretic semantics (which has much structure in common with Chapters 1–3) and a type system. Chapter 5, by Thorsten Altenkirch and Alexander Green, moves from λ-calculus to the functional programming language Haskell and shows how quantum operations can be structured as a monad. In Chapter 6, Philippe Jorrand and Simon Perdrix use the formal semantics of an imperative quantum programming language as the basis for an abstraction interpretation which enables static analysis of entanglement. Chapter 7 is by Vincent Danos, Elham Kashefi, Prakash Panangaden, and Simon Perdrix. It gathers together the results of their research programme on the measurement calculus, a formally defined language for measurement-based quantum computation. In Chapter 8, Mingsheng Ying, Runyao Duan, Yuan Feng, and Zhengfeng Ji study a different style of semantics – predicate transformers – that refers back to some of the first work on formal semantics of quantum programs (Sanders and Zuliani 2000).

The final three chapters return to the theme of quantum logic, introduced in categorical form in the first three chapters. Peter Hines and Samuel Braunstein, in Chapter 9, extend the Birkhoff–von Neumann approach to quantum logic by generalizing from projectors to partial isometries, and study the resulting categorical structures. In Chapter 10, Paulo Mateus, Jaime Ramos, Amilcar Sernadas, and Cristina Sernadas discuss a temporal extension of exogenous quantum propositional logic (EQPL) which is designed to support reasoning about the dynamic behaviour of quantum systems such as algorithms and protocols. Finally, in Chapter 11, Simon Gay, Rajagopal Nagarajan, and Nikolaos Papanikolaou describe a model-checking tool that, given a formal model of a quantum system, can automatically verify specifications expressed in terms of EQPL and its temporal extensions.

Simon Gay and Ian Mackie
May 2009
Bibliography

