Fixed-Mobile Wireless Networks Convergence
Technologies, Solutions, Services

Do you need to understand the technical solutions and associated services that allow multimedia communications between established mobile cellular networks and any form of fixed wireless communications? If so, this practical book, presenting the fundamentals of individual fixed and mobile wireless technologies in terms of architectures, standards, management capabilities, and quality of service issues, is essential reading.

Adopting the term Fixed-Mobile Convergence (FMC), an analysis of the interworking between cellular networks and a variety of wireless technologies such as WLAN, WiMAX, RFID and UWB is provided. An in-depth study of the convergent solutions offered by UMA and IMS is also given, in addition to the commercial realities of implementing convergent solutions. Up-to-date information about technical solutions, products, vendors, and current service offerings is included. You’ll also find criteria for analyzing and evaluating fixed-mobile convergent products and services, and numerous diagrams and feature/component tables. This practical text is ideal for engineers and practitioners in the field of telecommunications and wireless communications, as well as for graduate students of electrical and computer engineering.

Joseph Ghetie is a Network and Systems Engineer Consultant and Instructor for his own technical consulting and training business TCOM & NET. He previously worked for Telcordia Technologies (Bell Communications Research) for over 13 years, where he was responsible for developing architectures, requirements, and designing solutions for network management integration, providing consulting, and supporting management standards development. He has taught over 35 tutorials at major international conferences and symposia, and has authored 27 advanced technical courses in data communications, telecommunications, Internet networking, network and service management, and wireless communications.
Fixed-Mobile Wireless Networks Convergence

Technologies, Solutions, Services

JOSEPH GHETIE
I dedicate this book to my granddaughters, Nadia and Talia, with the wish they discover that science is the key to understanding our universe and that art is the key to understanding human beings and the human spirit.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disclaimer</td>
<td>xv</td>
</tr>
<tr>
<td>How the Book is Organized</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xx</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxvi</td>
</tr>
<tr>
<td>Preface</td>
<td>xxix</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xxxi</td>
</tr>
<tr>
<td>Acronyms</td>
<td>xxxiii</td>
</tr>
</tbody>
</table>

Part I Wireless Communications: Networking and Management

1 Wireless Communications and Networking

- 1.1 Communications Networks 3
- 1.2 Communications Architectures and Protocols 5
- 1.3 Wireless Communications 9
- 1.4 Wireless Communications Classification 11
- 1.5 Wireless Communications Architecture 14
- 1.6 Wireless Communications Architectural Components 15
- 1.7 Wired and Wireless Communications Networks 17
- 1.8 Spectrum Designation in Wireless Communications 19
- 1.9 Wireless Communications at a Glance 22

2 Network Management

- 2.1 Network and Systems Management Concepts 25
- 2.2 Network and Systems Management Models 28
- 2.3 Management Systems Classification 30
- 2.4 Management Systems Evolution 31
- 2.5 Network and Systems Management Platforms 33
- 2.6 Internet SNMP-based Management 36
- 2.7 ISO OSI CMIP-based Management 40
- 2.8 Network and Systems Management Requirements 45
- 2.9 Network and Systems Management Products 46
<table>
<thead>
<tr>
<th>3</th>
<th>Service Management</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Service Management Conceptual Model</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Classes of Services</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Quality of Service Parameters</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Service Level Specifications/Agreements</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Guidelines for Establishing SLAs</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>QOS Measurement Mechanisms</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Service Management and COS/QOS/SLA</td>
<td>54</td>
</tr>
<tr>
<td>3.8</td>
<td>High-level Service Management Requirements</td>
<td>55</td>
</tr>
<tr>
<td>3.9</td>
<td>Service Level Management</td>
<td>56</td>
</tr>
<tr>
<td>3.10</td>
<td>Service Management Products</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part II</th>
<th>Cellular Mobile Radio Networking and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Cellular Mobile Radio Networking</td>
</tr>
<tr>
<td>4.1</td>
<td>Cellular Mobile Radio Communications Concepts</td>
</tr>
<tr>
<td>4.2</td>
<td>Mobile Radio Link Access Methods</td>
</tr>
<tr>
<td>4.3</td>
<td>PCS/PCN Communications Architecture and Components</td>
</tr>
<tr>
<td>4.4</td>
<td>Cellular Mobile Radio Spectrum</td>
</tr>
<tr>
<td>4.5</td>
<td>Handoff/Handover and Roaming in Mobile Networks</td>
</tr>
<tr>
<td>4.6</td>
<td>Cellular Mobile Networks Classification</td>
</tr>
<tr>
<td>4.7</td>
<td>GSM Packet Radio Service Network Architecture and Components</td>
</tr>
<tr>
<td>4.8</td>
<td>Cellular Mobile Standards and Standards Organizations</td>
</tr>
<tr>
<td>4.9</td>
<td>Cellular Mobile Applications and Services</td>
</tr>
<tr>
<td>4.10</td>
<td>Cellular Mobile Networks Evolution</td>
</tr>
<tr>
<td>4.11</td>
<td>GSM and CDMA Cellular Networks Comparison</td>
</tr>
<tr>
<td>4.12</td>
<td>UMTS/IMT-2000 Architecture and Components</td>
</tr>
<tr>
<td>4.13</td>
<td>Mobile Internet Protocol</td>
</tr>
<tr>
<td>4.14</td>
<td>Signaling in Cellular Mobile Communications</td>
</tr>
<tr>
<td>4.15</td>
<td>Leading Cellular Smartphone Technical Specifications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Cellular Mobile Radio Networks Management and Services</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Cellular Mobile Network Management Services</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>Mobile Networks Management Requirements</td>
<td>101</td>
</tr>
<tr>
<td>5.3</td>
<td>Cellular Mobile Networks Service Providers</td>
<td>101</td>
</tr>
<tr>
<td>5.4</td>
<td>Cellular Mobile Networks Management Products</td>
<td>103</td>
</tr>
<tr>
<td>5.5</td>
<td>Service Level Management in Mobile Networks</td>
<td>106</td>
</tr>
<tr>
<td>5.6</td>
<td>GSM/GPRS Data Networking</td>
<td>110</td>
</tr>
<tr>
<td>5.7</td>
<td>GPRS Classes of Services</td>
<td>112</td>
</tr>
<tr>
<td>5.8</td>
<td>GPRS QOS Profiles</td>
<td>113</td>
</tr>
<tr>
<td>5.9</td>
<td>Service Management Products in Mobile Networks</td>
<td>115</td>
</tr>
</tbody>
</table>
Contents

Part III Fixed Wireless Technologies: Networking and Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Wireless Local Area Networking</td>
<td>121</td>
</tr>
<tr>
<td>6.1</td>
<td>Wireless LAN Architecture</td>
<td>121</td>
</tr>
<tr>
<td>6.2</td>
<td>WLAN Networking Solutions Comparison</td>
<td>122</td>
</tr>
<tr>
<td>6.3</td>
<td>WLAN IEEE Standards</td>
<td>124</td>
</tr>
<tr>
<td>6.4</td>
<td>IEEE 802.11n and 802.11s WLAN Standards</td>
<td>125</td>
</tr>
<tr>
<td>6.5</td>
<td>Wi-Fi Multimedia Specifications</td>
<td>127</td>
</tr>
<tr>
<td>6.6</td>
<td>FCC Released Unlicensed Spectrum Specifications</td>
<td>128</td>
</tr>
<tr>
<td>6.7</td>
<td>WLAN Security Aspects</td>
<td>128</td>
</tr>
<tr>
<td>6.8</td>
<td>Wireless LAN Adapters for Computing Devices</td>
<td>132</td>
</tr>
<tr>
<td>6.9</td>
<td>WLAN Systems Controllers</td>
<td>134</td>
</tr>
<tr>
<td>6.10</td>
<td>Advantages and Disadvantages of WLAN Technologies</td>
<td>135</td>
</tr>
<tr>
<td>6.11</td>
<td>WLAN Access Points and WLAN Service Platforms</td>
<td>136</td>
</tr>
<tr>
<td>6.12</td>
<td>WLAN Layered Communications</td>
<td>139</td>
</tr>
<tr>
<td>6.13</td>
<td>WLAN Management Requirements</td>
<td>140</td>
</tr>
<tr>
<td>6.14</td>
<td>WLAN Management Products</td>
<td>142</td>
</tr>
<tr>
<td>6.15</td>
<td>Voice over WLAN Architecture</td>
<td>143</td>
</tr>
<tr>
<td>6.16</td>
<td>Challenges of Transmitting Voice and Video over WLAN</td>
<td>144</td>
</tr>
<tr>
<td>6.17</td>
<td>WLAN QOS and VoWLAN QOS Metrics</td>
<td>147</td>
</tr>
<tr>
<td>7</td>
<td>Wireless Personal Area Networking</td>
<td>149</td>
</tr>
<tr>
<td>7.1</td>
<td>Wireless PAN Architecture</td>
<td>149</td>
</tr>
<tr>
<td>7.2</td>
<td>WPAN Networking Solutions</td>
<td>150</td>
</tr>
<tr>
<td>7.3</td>
<td>Bluetooth WPAN Architecture</td>
<td>151</td>
</tr>
<tr>
<td>7.4</td>
<td>Bluetooth Protocol Architecture</td>
<td>154</td>
</tr>
<tr>
<td>7.5</td>
<td>Bluetooth Profiles</td>
<td>155</td>
</tr>
<tr>
<td>7.6</td>
<td>Bluetooth Standards and Applications</td>
<td>157</td>
</tr>
<tr>
<td>7.7</td>
<td>Bluetooth Security</td>
<td>158</td>
</tr>
<tr>
<td>7.8</td>
<td>Advantages and Disadvantages of Bluetooth Technology</td>
<td>159</td>
</tr>
<tr>
<td>7.9</td>
<td>Bluetooth Products</td>
<td>160</td>
</tr>
<tr>
<td>7.10</td>
<td>ZigBee Network Architecture</td>
<td>160</td>
</tr>
<tr>
<td>7.11</td>
<td>ZigBee Protocol Architecture</td>
<td>162</td>
</tr>
<tr>
<td>7.12</td>
<td>Advantages and Disadvantages of ZigBee Technology</td>
<td>164</td>
</tr>
<tr>
<td>7.13</td>
<td>ZigBee Products</td>
<td>164</td>
</tr>
<tr>
<td>7.14</td>
<td>Comparison of Bluetooth and ZigBee</td>
<td>166</td>
</tr>
<tr>
<td>7.15</td>
<td>Power Line Communications Architecture</td>
<td>166</td>
</tr>
<tr>
<td>7.16</td>
<td>WPAN Management and WPAN QOS</td>
<td>169</td>
</tr>
<tr>
<td>8</td>
<td>Wireless Metropolitan Area Networking</td>
<td>172</td>
</tr>
<tr>
<td>8.1</td>
<td>Wireless MAN Technologies</td>
<td>172</td>
</tr>
<tr>
<td>8.2</td>
<td>Local Multipoint Distributed Services</td>
<td>173</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.3</td>
<td>Multi-Channel Multipoint Distributed Services</td>
<td>174</td>
</tr>
<tr>
<td>8.4</td>
<td>Free Space Optics Metropolitan Access</td>
<td>176</td>
</tr>
<tr>
<td>8.5</td>
<td>WiMAX-Wireless Metropolitan Area Network Architecture</td>
<td>177</td>
</tr>
<tr>
<td>8.6</td>
<td>WMAN Networking Solutions Technical Comparison</td>
<td>178</td>
</tr>
<tr>
<td>8.7</td>
<td>WiMAX Standardization</td>
<td>179</td>
</tr>
<tr>
<td>8.8</td>
<td>Mobile WiMAX 802.16e Main Features</td>
<td>180</td>
</tr>
<tr>
<td>8.9</td>
<td>WiMAX Protocol Architecture</td>
<td>181</td>
</tr>
<tr>
<td>8.10</td>
<td>WiMAX Security</td>
<td>182</td>
</tr>
<tr>
<td>8.11</td>
<td>Advantages and Disadvantages of WiMAX Technology</td>
<td>183</td>
</tr>
<tr>
<td>8.12</td>
<td>WiMAX and 3G Cellular Mobile Comparison</td>
<td>184</td>
</tr>
<tr>
<td>8.13</td>
<td>WiMAX Applications, Products and Service Providers</td>
<td>184</td>
</tr>
<tr>
<td>8.14</td>
<td>WiMAX Management Requirements and Management Products</td>
<td>187</td>
</tr>
<tr>
<td>8.15</td>
<td>WiMAX Quality of Services and QOS Metrics</td>
<td>188</td>
</tr>
<tr>
<td>9</td>
<td>Wireless Near-Field Sensor Networking</td>
<td>191</td>
</tr>
<tr>
<td>9.1</td>
<td>Near-Field Sensor Technologies</td>
<td>191</td>
</tr>
<tr>
<td>9.2</td>
<td>RFID Networking Architecture Components, Frequencies</td>
<td>192</td>
</tr>
<tr>
<td>9.3</td>
<td>Classification of RFID Tags</td>
<td>193</td>
</tr>
<tr>
<td>9.4</td>
<td>RFID Standards</td>
<td>194</td>
</tr>
<tr>
<td>9.5</td>
<td>RFID Applications</td>
<td>195</td>
</tr>
<tr>
<td>9.6</td>
<td>RFID Security Aspects</td>
<td>197</td>
</tr>
<tr>
<td>9.7</td>
<td>RFID Vendors, Products, and System Integrators</td>
<td>198</td>
</tr>
<tr>
<td>9.8</td>
<td>Near-Field Communications</td>
<td>199</td>
</tr>
<tr>
<td>9.9</td>
<td>Advantages and Disadvantages of RFID and NFC Technologies</td>
<td>201</td>
</tr>
<tr>
<td>9.10</td>
<td>Ultra Wide Band Network Architecture</td>
<td>202</td>
</tr>
<tr>
<td>9.11</td>
<td>Advantages and Disadvantages of UWB Technology</td>
<td>204</td>
</tr>
<tr>
<td>9.12</td>
<td>Wireless USB</td>
<td>205</td>
</tr>
<tr>
<td>Part IV</td>
<td>Fixed Wireless Cellular Mobile Networks Convergence and Integration</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fixed-Mobile Convergence Overview</td>
<td>209</td>
</tr>
<tr>
<td>10.1</td>
<td>Why Convergence?</td>
<td>209</td>
</tr>
<tr>
<td>10.2</td>
<td>Convergence Explained</td>
<td>210</td>
</tr>
<tr>
<td>10.3</td>
<td>Fixed-Mobile Convergence History</td>
<td>211</td>
</tr>
<tr>
<td>10.4</td>
<td>A High Level Wireless Convergence Concept</td>
<td>211</td>
</tr>
<tr>
<td>10.5</td>
<td>Fixed-Mobile Convergent Network Architecture</td>
<td>212</td>
</tr>
<tr>
<td>10.6</td>
<td>Fixed-Mobile Convergent Network Components</td>
<td>213</td>
</tr>
<tr>
<td>10.7</td>
<td>Fixed-Mobile Convergent Network Interfaces and Protocols</td>
<td>214</td>
</tr>
<tr>
<td>10.8</td>
<td>Drivers of Fixed-Mobile Convergence</td>
<td>214</td>
</tr>
<tr>
<td>10.9</td>
<td>Convergence Functional Requirements</td>
<td>215</td>
</tr>
<tr>
<td>10.10</td>
<td>Media Independent Handover Services (IEEE 802.21)</td>
<td>216</td>
</tr>
<tr>
<td>10.11</td>
<td>Fixed-Mobile Convergent Networking Solutions</td>
<td>218</td>
</tr>
<tr>
<td>10.12</td>
<td>Fixed-Mobile Convergent Networking Forums</td>
<td>218</td>
</tr>
</tbody>
</table>
Contents

11 Wireless LAN Cellular Mobile Convergence 220

11.1 WLAN Convergent Network Architecture 220
11.2 WLAN Convergent Applications 220
11.3 802.11n-based WLAN Implementation Case Study 221
11.4 Convergent WLAN Cellular Mobile Network Architecture 223
11.5 Dual Mode WLAN Mobile Convergent Handsets 224
11.6 Siemens WLAN Cellular Mobile Convergent Network Case Study 226
11.7 WLAN Mesh Networks 227
11.8 Metropolitan Mesh WLAN Convergent Network Case Study 230
11.9 Wi-Fi and BlackBerry Convergence 231
11.10 Wi-Fi and iPhone Convergence 232
11.11 Siemens HiPath WLAN Network Management Solution 233
11.12 QOS in WLAN Cellular Mobile Convergent Networks 235

12 Wireless PAN Cellular Mobile Convergence 238

12.1 Bluetooth Networking 238
12.2 Bluetooth Convergent Applications 239
12.3 Multi-mode Bluetooth Mobile Convergent Terminals 240
12.4 Convergent Bluetooth Cellular Mobile Network Architecture 241
12.5 Bluetooth and GSM Health Care Convergent Networks Case Studies 243
12.6 ZigBee Networking Standards 244
12.7 ZigBee Convergent Applications 247
12.8 ZigBee-based Electrical Power Management Case Study 247
12.9 ZigBee, Wi-Fi, GSM Convergence Case Study 248
12.10 ZigBee and Wi-Fi Coexistence and Interference 250
12.11 AirBee ZigBee Network Management System 251
12.12 WPAN PLC-based Management System 253
12.13 The Concept of Femtocell 254

13 Wireless MAN Cellular Mobile Convergence 256

13.1 WiMAX Mobile Convergent Applications 256
13.2 WiMAX and Internet Protocol Television 256
13.3 Multi-mode WiMAX Mobile Convergent Terminals 257
13.4 Convergent WiMAX Cellular Mobile Network Architecture 259
13.5 WiMAX and Ultra Wide Band Convergence 260
13.6 WiMAX and Fixed Wired EPON Convergence 261
13.7 WiMAX, Wi-Fi, and RFID Convergence Case Study 263
13.8 WiMAX and Metro Mesh Convergence Case Study 264
13.9 QOS in Fixed-Mobile WiMAX Convergence 266
13.10 WiMAX Mobile Convergence Service Providers 266
13.11 WiMAX as an Alternative to 4G Cellular Mobile 267
13.12 The Upcoming Auction of the 700 MHz Spectrum 268
Contents

14 Wireless Sensor Networks Cellular Mobile Convergence 270

14.1 RFID Technology Development 270
14.2 RFID Tag Standards and Code Structures 272
14.3 RFID Tag Evaluation Criteria 274
14.4 RFID Reader Evaluation Criteria 274
14.5 RFID and Cellular Mobile Networks Convergence 275
14.6 RFID-based Health Care Services Case Study 276
14.7 IBM’s Secure Trade Lane RFID-based Case Study 278
14.8 NFC Networking, Standards, and Applications 280
14.9 NFC and Cellular Mobile Networks Convergence 281
14.10 NFC Payment and Promotion Case Study 282
14.11 UWB-based Wireless USB Products 284
14.12 Mobile Ad-hoc and Wireless Sensor Networks 284

Part V Fixed Wireless Cellular Mobile Networks Convergence: Standardized Networking Solutions

15 UMA-based Fixed Wireless and Cellular Mobile Networking Solutions and Products 289

15.1 What is Unlicensed Mobile Access or GAN? 289
15.2 UMA-based Network Architecture 289
15.3 UMA-based Networking Overview 290
15.4 UMA-based WLAN and GSM/CDMA Convergent Networking Solution 291
15.5 Advantages and Disadvantages of the UMA/GAN Technology 292
15.6 UMA/GAN Standard Specifications 293
15.7 UMAN UNC Design Requirements and Functionalities 293
15.8 UMAN UNC Discovery and Registration 294
15.9 Securing the UMA “up” Interface 295
15.10 GERAN to UMAN UNC Handover Operation 296
15.11 UMAN to GERAN UNC Handover Operation 296
15.12 UMAN Signaling Protocol for Voice Communications 297
15.13 UMAN Signaling Protocol for Data Communications 297
15.14 UMAN Mobile Station Lower Layers Protocols 299
15.15 UMA-based FMC Solutions, Products, and Services 300
15.16 UMA-based Nokia Dual-mode 6301 Handset 302

16 Session Initiation Protocol 303

16.1 What is the Session Initiation Protocol-SIP? 303
16.2 SIP System Architecture 303
16.3 SIP Overview 305
16.4 SIP-based Message Exchange 307
16.5 SIP Message Format, Fields, and Options 308
16.6 SIP IETF Standards and Extensions 310
Contents xiii

16.7 Advantages and Disadvantages of SIP 311
16.8 SIP Applications 312
16.9 ITU-T H.323 Signaling Protocols 313
16.10 Signaling Gateways/Session Controllers 314
16.11 SIP-based Interoperability in Wireless Networks 316
16.12 SIP-based VoIP Network Architecture 317
16.13 SIP-based Solutions, Products, and Services 318
16.14 SIP-based Signaling in the MobileIGNITE Architecture 320
16.15 Electronic Number Mapping (ENUM) 321

17 IMS-based Fixed Wireless and Cellular Mobile Networking Solutions and Products 324

17.1 What is the IP-based Multimedia Subsystem? 324
17.2 The Convergence Path to IMS 325
17.3 IMS Networking Overview 327
17.4 High-Level IMS Architecture 328
17.5 IMS Reference Architecture 329
17.6 Call Session Control Functional Modules 332
17.7 Advantages and Disadvantages of IMS Technology 333
17.8 IMS Standard Specifications 334
17.9 IMS Applications 336
17.10 IMS Architecture Reference Points 336
17.11 IMS-based FMC Solutions, Products, and Services 339
17.12 Verizon Wireless IMS Vision 342
17.13 IMS and Softswitches 343
17.14 ETSI TISPAN 346
17.15 Customized Applications for Mobile Networks Enhanced Logic (CAMEL) 349

Part VI Fixed-Mobile Convergence Services, Industry Trends, and Implementation Issues

18 QOS in Fixed Wireless Cellular Mobile Convergent Networks 355

18.1 Fixed-Mobile Convergent Network Management 355
18.2 Service Level Management in Wireless Convergent Networks 357
18.3 Integrated and Differentiated Services 359
18.4 Multi-Protocol Label Switching 363
18.5 Policy-based Management 365
18.6 QOS in UMA-based Fixed-Mobile Convergent Networks 369
18.7 QOS in IMS-based Fixed-Mobile Convergent Networks 372
18.8 Open Mobile Alliance and Handset Management 375
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>The Economics of Fixed Wireless Cellular Mobile Networks Integration</td>
<td>378</td>
</tr>
<tr>
<td>19.1</td>
<td>Economic Drivers of Fixed-Mobile Convergence</td>
<td>378</td>
</tr>
<tr>
<td>19.2</td>
<td>Projected Mobile Communications Growth</td>
<td>379</td>
</tr>
<tr>
<td>19.3</td>
<td>Projected Development of WLANs and Mesh WLANs</td>
<td>381</td>
</tr>
<tr>
<td>19.4</td>
<td>Projected Development of Bluetooth and ZigBee Networks</td>
<td>382</td>
</tr>
<tr>
<td>19.5</td>
<td>Projected Development of WiMAX Networks</td>
<td>382</td>
</tr>
<tr>
<td>19.6</td>
<td>Projected Development of RFID, NFC, and WUSB Networks</td>
<td>383</td>
</tr>
<tr>
<td>19.7</td>
<td>Projected Development of UMA-based Convergent Networks</td>
<td>384</td>
</tr>
<tr>
<td>19.8</td>
<td>Projected Development of IMS-based Convergent Networks</td>
<td>385</td>
</tr>
<tr>
<td>19.9</td>
<td>Evaluation Criteria for Fixed-Mobile Convergence Solutions</td>
<td>386</td>
</tr>
<tr>
<td>20</td>
<td>Fixed-Mobile Convergence Implementation: Status, Trends, and Issues</td>
<td>390</td>
</tr>
<tr>
<td>20.1</td>
<td>Benefits of Fixed-Mobile Convergence</td>
<td>390</td>
</tr>
<tr>
<td>20.2</td>
<td>Trends in Fixed and Mobile Wireless Communications</td>
<td>391</td>
</tr>
<tr>
<td>20.3</td>
<td>Trends in Fixed-Mobile Convergence</td>
<td>393</td>
</tr>
<tr>
<td>20.4</td>
<td>3GPP Long Term Evolution, 3GPP2 Ultra Mobile Broadband, and NGMN</td>
<td>394</td>
</tr>
<tr>
<td>20.5</td>
<td>World Wide Web 2.0 and Service Oriented Architecture</td>
<td>396</td>
</tr>
<tr>
<td>20.6</td>
<td>General Issues in Fixed-Mobile Convergence</td>
<td>397</td>
</tr>
<tr>
<td>20.7</td>
<td>Issues in UMA-based Convergence Implementation</td>
<td>397</td>
</tr>
<tr>
<td>20.8</td>
<td>Issues in IMS-based Convergence Implementation</td>
<td>398</td>
</tr>
<tr>
<td>20.9</td>
<td>Conclusions</td>
<td>398</td>
</tr>
</tbody>
</table>

References 400

Index 405
Disclaimer

Product and service information contained in this book are primarily based on technical reports and documentation, including publicly available information received from sources believed to be reliable. However, neither the author nor the publisher guarantees the total accuracy and completeness of information published herein. Neither the author nor the publisher shall be responsible for any errors, omissions, or damages arising out of use of this information. Any mention of products, suppliers, and service providers in this book is done where necessary for the sake of scientific accuracy or for background information to provide an example of a technology for illustrative or clarification purposes. No information provided in this book is intended to be or shall be construed to be as either positive or negative endorsement, certification, approval, recommendation or rejection of any product, supplier, application, or service.
How the Book is Organized

The book consists of six major parts organized into 20 chapters. The first part describes the fundamental concepts of wireless communication and networking along with the concepts of network and service management. The second part is focused on one of the entities of convergence, cellular mobile radio networks with their network and service management capabilities. The third part presents the other side of the convergence equation, the fixed wireless technologies that span from local area networks, to personal area networks, to near-field sensor networks, and metropolitan access networks. The fourth part introduces all the elements of fixed-mobile convergence analyzing the particular architectural solutions, products, and services that result from the integration between each form of fixed wireless network and mobile cellular network. Several convergent implementations case studies are analyzed. The fifth part is dedicated to an in-depth analysis of two major standardized sets of solutions and specifications that provide a total approach to convergence, namely, the Unlicensed Mobile Access (UMA) and IP-based Multimedia Subsystem (IMS) with particular references to signaling using the Session Initiation Protocol (SIP). The sixth part provides an overall analysis of convergent services, quality of service, service providers, industry trends, economics of convergence, and evaluation criteria for fixed-mobile solutions/products as well as issues regarding design, development, and implementation of fixed-mobile convergence.

The organization of this book is simple. First, we introduce the palette of individual wireless technologies with a magnifying glass to show what is important and relevant to convergence, i.e., architectures, standards, management capabilities, and quality of services. Then we look at the individual approaches taken for converging pairs of fixed wireless and cellular mobile networks. Next, we provide a more in-depth look at the global convergent solutions offered by UMA and IMS. Finally, we analyze the marketing projection of convergent solutions, keeping an eye on the real issues when implementing these solutions.

Part I. Wireless Communications: Networking and Management

Chapter 1 is an overview of the world of wireless communications as supported through various architectures with a diverse set of components and spectrum allocations.

Chapter 2 presents the overall concept of open network management systems, management platforms, layered communication architectures, management protocols, and
specific management requirements for wireless communications along with network management products.

Chapter 3 presents the service management concept and its components, classes of services, quality of service, and service level agreements/specifications along with specific service management products.

Part II. Cellular Mobile Radio Networking and Management

Chapter 4 provides an overview of cellular mobile radio networking architectures, and radio link access methods. Identification of spectrum allocation for specific technologies, standards organizations, and overall generational evolution steps are all intended to provide a common view of the primary entity of the fixed-mobile convergence equation.

Chapter 5 investigates specific aspects of cellular mobile networks and service management with focus on GSM/GPRS classes of services and GPRS service profiles.

Part III. Fixed Wireless Technologies: Networking and Management

Chapter 6 analyzes the wireless local area network environment from architecture to specific standards implementation with a special focus on challenges raised by transmitting voice over wireless LANs, a key requirement for convergence.

Chapter 7 analyzes the wireless personal area network environment from architectures to major standards implementations (Bluetooth and ZigBee) including analysis of QOS in wireless PAN environment.

Chapter 8 analyzes the evolution of wireless metropolitan access solutions with focus on WiMAX architecture, solutions, standards, and products.

Chapter 9 is dedicated to the analysis of near-field sensor networks from architectures to major standard implementations (RF Identification, Near Field Communications and Ultra Wide Band) along with network and service management capabilities.

Part IV. Fixed Wireless Cellular Mobile Networks Convergence and Integration

Chapter 10 provides an overview of the fixed-mobile concept that includes terminology, architectural components, interfaces, and protocols, including the overall requirements, solutions, and technical forums created to advance fixed-mobile convergent concepts.

Chapter 11 presents the specific architectural solutions, applications, products, and services created as part of the technical effort to provide convergence between wireless LANs (IEEE 802.11 a/b/g/n and WLAN Mesh) and cellular mobile networks. Several convergent implementations case studies are analyzed.

Chapter 12 presents the specific architectural solutions, applications, products, and services born out of the convergence between wireless PANs (Bluetooth and ZigBee)
Chapter 13 presents the specific architectural solutions, applications, products, and services aimed at incorporating wireless metropolitan access, represented by WiMAX technology, into wide area cellular mobile networks. Several convergent implementations case studies are analyzed.

Chapter 14 presents the specific architectural solutions, applications, products, and services created as part of the technical effort to extend fixed-mobile convergence to incorporate the convergence between wireless near-field sensor networks (RFID, NFC, UWB) and cellular mobile networks. Several convergent implementations case studies are analyzed.

Part V. Fixed Wireless Cellular Mobile Convergence: Standardized Networking Solutions

Chapter 15 is a comprehensive presentation of the Unlicensed Mobile Access (UMA) set of standard specifications. It includes an overview of UMA evolution, driving forces, and specific architectures to incorporate the convergence aspects in a unique approach that spans wireless LANs, PANs, WiMAX, and sensor networks. Details about UMA network design, the UMA Network Controller, signaling protocols for voice and data communications, and interoperability parameters in UMA operations are supplemented by UMA-based fixed-mobile convergence solutions and products.

Chapter 16 is a comprehensive analysis of the signaling protocol of choice for IMS-based networks, namely, the Session Initiation Protocol (SIP). Details about SIP development, acceptance, applicability and actual standards include SIP message formats, fields, optional parameters and specific implementation of this protocol in voice over IP operations and IMS-based network design and operations.

Chapter 17 is a comprehensive presentation of the IP-based Multimedia Subsystem (IMS) set of standard specifications. It includes an overview of IMS evolution, driving forces, high-level conceptual architecture, specific architectural components, sub modules, functions, and the all-important stepping-stones for convergence not only within the wireless world but also between wired and wireless networks. Details about standards, proposed amendments, signaling specifications, and interoperability parameters in IMS operations are supplemented by analysis of partial implementations of IMS-based fixed-mobile convergence products and services.

Part VI. Fixed-Mobile Convergence Services, Industry Trends, and Implementation Issues

Chapter 18 looks into Quality of Service (QOS) aspects of fixed wireless cellular mobile networking solutions from the perspective of both voice and data parameters, and associated QOS metrics. Integrated/Differentiated Services, Multi-Protocol Label Switching,
and Policy-based Management are also analyzed. Specific services and service providers of convergent solutions in both UMA-based and IMS-based networks are identified and analyzed.

Chapter 19 provides the economic perspective of fixed-mobile convergence starting with the driving forces and opponents of convergence, This is followed by diagrams depicting projected growth of various convergent applications in the domain of wireless LANs, PANs, WiMAX, and sensor networks along with the growth of the telecommunications industry in general, and the mobile communications sector in particular. A comprehensive set of evaluation criteria was developed to analyze and qualify fixed-mobile convergent solutions and products.

Chapter 20 is a summary of benefits of fixed-mobile convergence followed by an analysis of the state of implementations and trends in fixed-mobile convergence. A detailed list of issues confronting fixed-mobile convergence implementation in both UMA-based and IMS-based versions concludes this chapter.
List of Figures

Chapter 1

1.1 Telecommunications Network Model page 4
1.2 Data Communications Network Model 4
1.3 Data Transmission Procedures 6
1.4 Connection-oriented and Connectionless Transmission Services 6
1.5 OSI Layered Communications Stack 7
1.6 OSI Protocol Data Units Layer by Layer 9
1.7 Wireless Communications Model 10
1.8 Wireless Communications Classification ... 12
1.9 Wireless Communications Architecture ... 15
1.10 Wireless Communications Architectural Components ... 16
1.11 An Overall View of Data Communications Networks ... 18
1.12 Communications Media and Transmission Rates ... 20
1.13 Wireless Communications at a Glance 23

Chapter 2

2.1 Basic Manager-Agent Management Model page 26
2.2 Network Management Topology Frameworks 26
2.3 Open Management Systems Conceptual Architecture 27
2.4 Models of the Wireless Manager-Agent Paradigm 28
2.5 Management Systems Domains 30
2.6 Management Systems Evolution 32
2.7 Management Platforms Frameworks 34
2.8 Management Platforms Architectural Model 35
2.9 Management Platform Core Operations and Services 35
2.10 Internet TCP/IP-based Communications Stack 36
2.11 SNMP-based Protocol Communication Stack 37
2.12 SNMP-based Manager-Agent Paradigm 38
2.13 Internet Management Layered Architecture and Standards 38
2.14 SNMP-based Manager-Agent Services 39
2.15 Enterprise Network SNMP-based Management Architecture 40
List of Figures xxi

2.16 OSI Management Layered Architecture and Standards 41
2.17 OSI-based Manager-Agent Relationship 42
2.18 OSI CMISE/CMIP-based Manager-Agent Services 42
2.19 TMN OSI-based Network Management Architecture 44
2.20 Network Management Functions Decomposition 44

Chapter 3

3.1 Communication Service Conceptual Model page 48
3.2 Communication Service Components 48
3.3 Communications Quality of Service Parameters 50
3.4 QOS Mapping with Layered Communications 52
3.5 SLA Management Model 52
3.6 Service Life Cycles 53
3.7 Service Management Processes 55
3.8 Service Management and TMN Layered Architecture 56
3.9 Telecommunications Operations Map 57
3.10 End-to-End QOS-based Service Level Management 59

Chapter 4

4.1 Cell-based Mobile Radio Communications Concept page 64
4.2 Cellular Mobile Communications Access Methods 65
4.3 PCS/PCN Network Architecture and Components 66
4.4 Cellular Spectrum Allocations in the US 68
4.5 PCS Spectrum Allocations in the US 69
4.6 IMT-2000 Worldwide Spectrum Allocations 69
4.7 Handoffs/Handovers between Mobile Cells and Carriers 70
4.8 Cellular Mobile Networks Classification 72
4.9 Core GSM/GPRS Network Architecture and Components 74
4.10 Cellular Mobile Networking-related Standards Organizations 75
4.11 Types of Standards and Standards Processes 76
4.12 PCS Standards and Standards Organizations 77
4.13 Cellular Mobile Networks Evolution 81
4.14 3G Migration Path of Current Wireless Mobile Systems 82
4.15 UMTS Architectural Components and Interfaces 87
4.16 A Simplified View of the UMTS Architecture and Interfaces 88
4.17 UMTS Layered Communication Stacks for Data Communications 89
4.18 Internet Protocol (IP) Data Unit Structure 90
4.19 Mobile IP Datagram Flow 91
4.20 Mobile IP Header Registration Request Format 92
4.21 Common Channel Signaling SS7 Network Architecture 94
List of Figures

4.22 SS#7 Communication Stack for PSTN and Cellular Mobile Networks 95
4.23 Cellular Mobile and PSTN Signaling Network 96

Chapter 5

5.1 TeMIP Management Platform Architecture
5.2 Vodafone/Mannesmann Mobile Network TeMIP-based TMN 105
5.3 Siemens Mobile Integrator TeMIP-based Management Solution 105
5.4 QoS in UMTS Networks 107
5.5 End-to-End QoS in Wireless Networks 107
5.6 GSM/GPRS/EDGE Data Networking 110
5.7 Micromuse NetCool SLM Application Suite 117
5.8 Micromuse Netcool/Omnibus Architecture 117

Chapter 6

6.1 Wireless LAN Architecture
6.2 Wireless Systems Controller Architecture 135
6.3 WLAN 802.11 MAC Frame Format 140
6.4 Logical Link Control Frame Format 140
6.5 WLAN Layered Communication Stack for Data Communications 141
6.6 Voice over WLAN Network Architecture 144

Chapter 7

7.1 A Residential Network Infrastructure
7.2 Wireless Personal Area Network Architecture 150
7.3 Bluetooth Wireless Personal Area Network Architecture 153
7.4 Bluetooth Protocol Stack 154
7.5 ZigBee Network Architecture 161
7.6 ZigBee Framing Protocol Architecture 163
7.7 Power Line Communications-based PAN 167

Chapter 8

8.1 LMDS Broadband Access Network Architecture
8.2 MMDS Broadband Access Network Architecture 174
8.3 Free Space Optics Wireless Access Network Architecture 176
8.4 WiMAX Broadband Access Network Architecture 178
8.5 WiMAX Protocol Architecture 182
Chapter 9

9.1 A High Level Passive RFID Networking Architecture page 192
9.2 Ultra-Wide Band Architecture 203

Chapter 10

10.1 A High-level Depiction of the Convergence Concept page 212
10.2 Fixed-Mobile Convergent Network Architecture 212
10.3 Fixed-Mobile Convergent Network Components and Technologies 213
10.4 Fixed-Mobile Convergent Network Interfaces and Protocols 214
10.5 Media Independent Handover Service Architecture 216
10.6 Media Independent Handover Protocol Architecture 217

Chapter 11

11.1 WLAN Convergent Network Architecture page 221
11.2 IEEE 802.11n-based WLAN Architecture 222
11.3 Wireless LAN and Mobile GSM/CDMA Networks Convergence 224
11.4 Siemens WLAN Cellular Fixed-Mobile Convergence Architecture 226
11.5 Wireless LAN Mesh Network Architecture 228
11.6 Motorola Canopy HotZone Duo Mesh Network Architecture 230
11.7 Siemens HiPath Wireless Network Architecture 234
11.8 QOS in a WLAN Cellular Mobile Convergent Architecture 236
11.9 WLAN/Cellular Mobile Convergent Network QOS 236

Chapter 12

12.1 Bluetooth Networking Architecture page 239
12.2 Bluetooth Cellular Mobile Convergent Network Architecture 242
12.3 Bluetooth-based Synchronization Network Architecture 243
12.4 Bluetooth and Cellular Network Convergence Case Study 244
12.5 ZigBee Protocol Stack Architecture 245
12.6 Networking Case Study: ZigBee-based Electrical Power Management 248
12.7 ZigBee, Wi-Fi, GSM Convergent Network Architecture 249
12.8 AirBee ZigBee Network Management System 252
12.9 PLC-based PAN/WPAN Network Management Architecture 253

Chapter 13

13.1 WiMAX Cellular Mobile Convergent Network Architecture page 259
13.2 WiMAX and Ultra Wide Band Convergent Network Architecture 261
List of Figures

13.3 WiMAX and EPON Networks Convergence 262
13.4 WiMAX, Wi-Fi, and RFID Convergent Network 264
13.5 WiMAX and Wi-Fi Mesh Convergent Network Architecture 265
13.6 FCC 700 MHz Auction Frequency Allocations 269

Chapter 14

14.1 RFID EPCglobal Code Structure page 271
14.2 UHF RFID ISO 18000 Part 7 Code Structure 273
14.3 RFID and Cellular Mobile Convergent Network Architecture 276
14.4 RFID-based Health Care Service Network Architecture 277
14.5 IBM’s Secure Trade Lane 278
14.6 EPCglobal Standard Architecture and IBM’s EPCIS 280
14.7 NFC and Cellular Mobile Networks Convergent Architecture 282
14.8 High-level Wireless Ad-hoc and Sensor Networks Architecture 285

Chapter 15

15.1 High-level UMA-based Network Architecture page 290
15.2 UMA-based WLAN and GSM/CDMA Convergent Network Architecture 292
15.3 Discovery and Registration in UMA Networks 294
15.4 UMAN Signaling Protocol Architecture for Voice Communication 298
15.5 UMAN Signaling Protocol Architecture for Data Communications 298
15.6 UMA/GAN Mobile Stations Lower Layers Protocol Stack 299

Chapter 16

16.1 Session Initiation Protocol (SIP) System Components page 304
16.2 SIP Basic Functional Model 304
16.3 SIP-based Session Establishment 304
16.4 SIP-based Signaling Messages in VoIP 307
16.5 SIP Message Format, Fields, and Options 308
16.6 H.323 Family of Standards and Protocol Stacks 314
16.7 Session Controller Gateway Architecture 316
16.8 SIP-based Mobile Hosts Interoperability in Wireless Networks 317
16.9 SIP-based VoIP Network Architecture 318
16.10 Electronic Number Mapping (ENUM) Network Architecture 321
List of Figures xxv

Chapter 17
17.1 Global Telecommunications Network page 325
17.2 A Simplified View of Telecommunications Networks 326
17.3 A High-level IMS Architectural Framework 326
17.4 A High-level IMS Architecture 328
17.5 IMS Reference Architecture 329
17.6 IMS Reference Points and Interfaces 337
17.7 Softswitch Layered Architecture 343
17.8 Media Gateway Controller (Softswitch) Architecture 344
17.9 ETSI TISPAN High-level Architecture 347
17.10 CAMEL/IMS Network Architecture 350

Chapter 18
18.1 TMN Layered Architecture page 356
18.2 Management of Fixed-Mobile Convergent Networks 356
18.3 End-to-End QOS in Wireless Networks 357
18.4 QOS in Fixed-Mobile Convergent Networks 358
18.5 Differentiated Services Architectural Model 361
18.6 Differentiated Services Fields Definition 362
18.7 Multi-Protocol Label Switching Architecture 364
18.8 MPLS Labeling Header Layout 364
18.9 Policy-based Management Architecture 366
18.10 COPS Protocol Framing Layout 368
18.11 UMA/GAN Convergent Architecture 370
18.12 QOS in UMA/GAN Network 371
18.13 Signaling and Application Flows in IMS Networks 373
18.14 End-to-End QOS Framework for IMS 373
18.15 QOS in the IMS Network Architecture 375

Chapter 20
20.1 Fixed and Mobile Networks Development: Evolution and Trends page 391
20.2 Fixed-Mobile Convergence Development: Evolution and Trends 394
List of Tables

Chapter 1

1.1 OSI Layers Main Functions and Services page 8
1.2 Relationships between Frequencies and Wavelengths 20

Chapter 2

2.1 Open Management Systems Components Descriptions page 28
2.2 SNMP-based Management Evaluation 39
2.3 OSI-based Management Evaluation 43

Chapter 3

3.1 Service Management Layer Functions and Activities page 58

Chapter 4

4.1 GSM Frequency Bands and Channel Numbering page 77
4.2 Comparisons of Cellular Mobile PCS with other Wireless Technologies 83
4.3 GSM Basic Technical Features 84
4.4 GSM Strengths and Weaknesses 84
4.5 CDMA Main Features 85
4.6 CDMA Strengths and Weaknesses 86
4.7 Cross-reference between 3GPP and 3GPP2 Terminology 89
4.8 Leading Cellular Smart Handset Technical Specifications 98
4.9 Leading Cellular Smart Handset Performance Test Results 99

Chapter 5

5.1 Cellular Mobile Service Providers in the USA page 102
5.2 UMTS QOS Traffic Classes 108
5.3 UMTS Traffic Class Attributes 108
List of Tables xxvii

5.4 USA/Worldwide Cellular Telephony Data Service Performance 111
5.5 GSM GPRS Classes of Services 112
5.6 GPRS Multislot Classes 113
5.7 GPRS Delay Classes 114
5.8 GPRS Reliability Classes 114
5.9 GPRS Throughput Classes of Services 115

Chapter 6

6.1 Comparisons of the Main WLAN Networking Solutions page 123
6.2 IEEE WLAN Spectrum Allocation and other Features 129
6.3 WLAN Security Standards Evolution 131
6.4 WLAN Adapters for PCs and Laptops 133
6.5 WLAN Access Points Evaluation 138
6.6 Voice over Wireless LAN Products Evaluation 146
6.7 Voice over Wireless LAN Quality of Service 148
6.8 Wi-Fi Multimedia QOS Specifications 148

Chapter 7

7.1 PAN and WPAN Comparative Infrastructures page 151
7.2 WPAN Technologies Evaluation 152
7.3 ZigBee Frequency Allocation 162
7.4 Bluetooth and ZigBee Comparison 167
7.5 WPAN Applications and Performance Metrics 170

Chapter 8

8.1 Wireless Metropolitan Access Technologies Comparison page 179
8.2 Mobile WiMAX and 3G Cellular Mobile Technologies Comparison 185
8.3 WiMAX QOS Classes and Applications 189
8.4 WiMAX Forum Applications Classes and QOS Parameters 189

Chapter 9

9.1 RFID Range of Frequencies page 192
9.2 RFID Classes and Typical RFID Applications 197