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1
Concept of a solid: qualitative introduction

and overview

1.1 Classification of solids

Condensed matter physics and solid state physics usually refer to the same area of physics,

but in principle the former title is broader. Condensed matter is meant to include solids,

liquids, liquid crystals, and some plasmas in or near solids. This is the largest branch of

physics at this time, and it covers a broad scope of physical phenomena. Topics range

from studies of the most fundamental aspects of physics to applied problems related to

technology.

The focus of this book will be primarily on the quantum theory of solids. To begin, it is

useful to start with the concept of a solid and then describe the two commonly used models

that form the basis for modern research in this area. The word “solid” evokes a familiar

visual picture well described by the definition in the Oxford Dictionary: “Of stable shape,

not liquid or fluid, having some rigidity.” It is the property of rigidity that is basic to the

early studies of solids. These studies focused on the mechanical properties of solids. As a

result, until the nineteenth century the most common classification of solids involved their

rigidity or mechanical properties. The Mohs hardness scale (talc – 1; calcite – 3; quartz –

7; diamond – 10) is a typical example. This is a useful but limited approach for classifying

solids.

The advent of atomic theory brought more microscopic concepts about solids. Solids

were viewed as collections of more or less strongly interacting atoms. From the point of

view of atomic theory, a gas is described in terms of a collection of almost independent

atoms, while a liquid is formed by atoms that are weakly interacting. This picture leads to

a description of the formation of solids, under pressure or by freezing, in which the dis-

tances between atoms are reduced and, in turn, this causes them to interact more strongly.

Molecular solids are formed by condensing molecular gases.

Hence, the development of atomic physics and chemical analysis led to a more detailed

classification of solids according to chemical composition. Although for most studies of

solids it is necessary to establish the identity of the constituent atoms, such a scheme

provides limited insight into many of the basic concepts of condensed matter physics.

Solids can also be classified according to their crystalline structure. This monumen-

tal feat has occupied crystallographers and applied mathematicians for over a hundred

years. The discovery of X-ray crystallography added an important component to the atomic

model. The chemical view of a crystalline solid as a collection of strongly interacting atoms

can be expanded by adding that the atoms arrange themselves in a periodic structure. This
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4 1 Concept of a solid: qualitative introduction and overview

Table 1.1 Classification of solids using resistivity.

Class Typical resistivity (� cm) Example

metal 10−6 copper

semimetal 10−3 bismuth

semiconductor 10−2–109 silicon

insulator 1014–1022 diamond

would not be true for non-crystalline solids such as window glass. For most modern stud-

ies of solids, it is usually assumed that the structure and chemical composition are known

and that information of this kind is the starting point for most investigations. When new

materials are discovered, chemical and structural analyses are often the first steps in the

characterization process.

Properties other than mechanical, chemical, and structural can be used to classify solids.

Electromagnetic and thermal characteristics are commonly used. In particular, the resistiv-

ity ρ is the most used property, since it involves a single scalar quantity or a symmetric

tensor with a range of values for different substances that varies at room temperature by

about 28 orders of magnitude. For many materials ρ can be measured with great precision.

Even though this approach focuses on a macroscopic property, with some theoretical anal-

ysis, it provides considerable insight into the microscopic nature of solids. Table 1.1 lists

the classification according to resistivity of the four classes of solids: metals, semimetals,

semiconductors, and insulators. Typical resistivities and examples for each class are also

given. Although the divisions between classes are approximate, this classification of solids

is extremely useful for a wide variety of studies and applications.

The chemical and structural classifications lead naturally to a model of crystalline solids

based on interacting atoms. This is a fruitful approach and suggests that it may be possible

to explain and predict the properties of solids through an adjustment or perturbation of

the properties of atoms. The use of the resistivity for the classification of types of solids

suggests another view, where the responses of a solid to external probes are used to classify

solids. Electromagnetic, thermal, or mechanical probes can give rise to responses that may

arise from the collective nature of the interacting particles in solids. However, viewing

the solid as perturbed atoms may not lead naturally to an interpretation of its properties in

terms of collective or cooperative effects. The interacting atoms approach is convenient for

describing ground-state properties, whereas collective effects are best explained in terms

of a model based on the excitations of the solid. Both models are discussed in more detail

below.

1.2 A first model of a solid: interacting atoms

Consider aluminum metal. It is a relatively soft solid with hardness between 2 and 2.9 on

the Mohs scale and it is composed of a single element. It crystallizes in the face-centered
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5 1.2 A first model of a solid: interacting atoms

nucleus: +13 e core electrons: –10 e valence electrons: –3 e

Figure 1.1 Schematic drawing of a solid consisting of atoms with atomic number z = 13 containing cores and valence electrons.

Here e denotes the charge of a proton.

cubic structure with cubic lattice constant a = 4.5 Å, it is a reasonably good conductor

(ρ = 2.8 × 10−6 � cm at 20◦C), and it becomes a superconductor at Tc = 1.19 K.

What model can be used as a basis for explaining these properties? Why is aluminum

different from copper, solid argon, solid oxygen, silicon, sodium chloride, or anthracene?

The most straightforward approach is to start from the chemical and atomic descriptions

and to consider aluminum metal as a collection of interacting aluminum atoms. Each alu-

minum atom is composed of a nucleus with atomic number Z = 13. Hence in the neutral

atom, there are 13 protons and 13 electrons. The electronic configuration can be easily di-

vided into 10 core electrons, denoted by principal and angular momentum quantum labels

as [(1s)2(2s)2(2p)6], and three outer valence electrons [(3s)2(3p)1].

One picture of solid aluminum is a collection of cores with each core composed of a

nucleus plus the tightly bound core electrons. Because of the cancellation of charge of 10

protons by the core electrons, the core has an effective charge Zeff = 3. Moving around the

cores and between them is a collection of itinerant, nearly-free electrons; there are three

per core. A schematic drawing is given in Fig. 1.1. Cores and valence electrons move in

a potential set by their mutual interactions. The laws of motion are well known and are

described by quantum mechanics. The Schrödinger equation is sufficient in most cases;

however, the Dirac equation may be necessary if relativistic effects are to be incorpo-

rated. The forces are also known; only electromagnetism plays a role. Gravity and weak
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6 1 Concept of a solid: qualitative introduction and overview

interactions are too feeble, and strong interactions are too short-ranged. However, the prob-

lem is not an easily solvable one since there are of the order of 1023 interacting particles in

solids per cm3. Approximate methods must be used and simpler models developed. These

will be discussed in Chapter 2.

1.3 A secondmodel: elementary excitations

A drastically different approach to studying condensed matter systems is also in common

use. In quantum mechanics and quantum field theory, it is often convenient to change the

description of a system when discussing its excited states. This picture is based on the

excitations that can emerge when a system is not in its ground state. A standard example is

a harmonic oscillator of mass m moving in a quadratic potential 1
2
mω2x2. This system has

an energy spectrum defined by a quantum number n, En = (n+ 1
2
)h̄ω, which can be viewed

as a ground state having energy E0 = 1
2
h̄ω, and higher-energy states in which quanta

of excitation energy h̄ω can be created and subsequently destroyed in any non-negative

integral number n. Another example is the electromagnetic field, which can can be viewed

as a collection of quantized particle-like excitations, the photons, each one characterized by

a wavevector k, a polarization direction ǫ̂, and energy h̄ω = h̄c|k|, where c is the velocity

of light.

The examples above give an operational definition of a quantum system that is described

by its excitations, each one defined by its energy and other specific physical characteristics.

Once the excitations are identified, the next task is to study the interactions between various

excitations and the manner in which these excitations appear, disappear, or are modified

when the external conditions of the quantum system change. In the end, the quantum sys-

tem will be characterized by its elementary excitations when probes are used to study its

properties.

The elementary excitations of a solid can often be divided into two classes: quasi-

particles and collective excitations. Quasiparticles are usually fermions and resemble

well-defined excited states of the non-interacting real particles of the solid. Collective

excitations are usually bosons and do not resemble their constituent real particles. In

the majority of cases, collective excitations are associated with macroscopic collective

motions of the system, which in turn are described by quanta of generalized harmonic os-

cillators that can be created or destroyed in an integral number n. Each quantum provides

an excitation energy h̄ω.

The language of second quantization is the natural one to use for this model. Since ele-

mentary excitations can be created and destroyed, and since symmetric (Bose–Einstein)

or antisymmetric (Fermi–Dirac) conditions must be satisfied, creation and destruction

operators, with their attendant commutation and anticommutation rules, are among the

fundamental descriptive tools of this approach.

To explain the properties of a solid, it is advantageous to define the elementary

excitations of the solid, to describe their properties and characteristics, to evaluate their

interactions, and to determine how they respond to external probes.
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7 1.4 Elementary excitations associated with solids and liquids

1.4 Elementary excitations associated with solids and liquids

Quasielectrons. Quasielectrons (or electrons for short) are quasiparticles that behave like

non-interacting electrons in low-lying excited states. They are fermions that are charac-

terized by energy and quantum numbers, such as their wavevectors and spin orientations.

Their properties include the effects of the environment in which they move. An important

example is that of an electron experiencing the interaction with other electrons that can

change its free electron mass m to an effective mass m∗ > m. The resultant quasielec-

tron can be described by one-particle states of spin 1
2

and charge −|e|. Typical excitation

energies for quasielectrons are of the order of the Coulomb interaction energy between

two electrons separated by a crystal lattice parameter a: e2

a
∼= 5 eV. Typical velocities

associated with quasielectrons are v ∼= ( e2

am
)1/2 ∼= 108 cm/s.

Hole. The removal of an electron from an orbital that is normally occupied in the ground

state is called a hole. The analogy is made with the Dirac theory of positrons. A hole is

a quasiparticle that has charge +|e|, spin 1
2
, and energies and velocities similar to quasi-

electrons. When electrons are injected into or removed from a solid in processes such as

those associated with quantum tunneling phenomena and electron emission, they are of-

ten treated as single particles without any reference to the holes left behind. The holes are

usually studied separately.

Phonon. A phonon is a collective excitation (boson) associated with lattice vibrations or

sound waves. It is defined by a wavevector q, a branch or polarization mode index α, and

an energy h̄ω. Typical energies are of the order of kBTD, where kB is Boltzmann’s constant

and TD is the Debye temperature. Since TD is of the order of room temperature (∼300 K),

a typical phonon energy is h̄ω ∼= 0.025 eV.

Plasmon. A plasmon is a collective excitation (boson) associated with the collective

motion of the electronic charge density. It is characterized by a wavevector q and an energy

of the order of the classical plasma energy (in three dimensions)

h̄ωp = h̄

(

4πne2

m

)
1
2

, (1.1)

where n is the density of valence electrons per unit volume. For typical solids, h̄ωp
∼= 10

eV. This value can be smaller by an order of magnitude or more in low-density electron or

hole systems such as those found in semimetals and degenerate semiconductors.

Magnon. A magnon is the collective excitation (boson) associated with spin waves or

spin excitations, resulting from the occurrence of spin reversals in an ordered magnetic

system. Typical energies are of the order of the ordering temperatures (Curie or Néel).

These can be as high as 10−1 eV, but are usually much lower (∼ 4 × 10−5 eV).

Polaron. A polaron is a special type of quasielectron that exists in crystals. It can be

regarded as an electron or a hole moving through a crystal and carrying a lattice deforma-

tion or strain with it. If the strain is expressed in terms of excitations of phonons, this leads

to the view of a polaron as an electron accompanied by a cloud of phonons. The terms
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8 1 Concept of a solid: qualitative introduction and overview

“polaron” and “polaron effects” are often used to describe changes in electron properties

arising from electron–phonon interactions in general.

Exciton. An exciton is a bound or quasibound state of a quasielectron and a hole. This

elementary excitation is similar to positronium, and it often behaves as a boson which can

be decomposed into its two component fermions or radiatively annihilated. Excitons are

usually observed in insulators and semiconductors. Typical binding energies are ∼0.025 eV

in three-dimensional systems.

Superconducting quasiparticles. Superconducting quasiparticles are fermions that de-

scribe the electronic excited states of a superconductor. They are sometimes called Cooper

particles (not Cooper pairs) or Bogoliubons. Because of the physics inherent in the de-

scription of the superconducting ground state, these quasiparticles are viewed as a linear

combination of quasielectrons and holes. Typical energies are of the order of the su-

perconducting transition temperature between 10−5 eV and 10−2 eV, depending on the

material.

Roton. A roton can be viewed as a special phonon associated with a local energy min-

imum in the dispersion relation at a finite wavevector. This description usually applies to

liquid He4. Typical roton energies in helium are of the order of 10−3 eV.

1.5 External probes

Knowledge about the properties of solids is obtained from measurements done under well-

defined conditions. These are either equilibrium situations, in which the temperature and

externally applied static electric and magnetic fields are predetermined, or dynamical sit-

uations in which energy, momentum, angular momentum, and other dynamical quantities

are exchanged with the environment. In the latter case, the agents that effect this exchange

are also microscopic quanta, the so-called test or probe particles. Some of these are listed

below.

Photons. Electromagnetic probes are the most commonly used probes in solids, for

example, they are used in absorption spectra, reflectivity spectra, and photoemission spec-

tra. The energy range of the useful photons spans the available electromagnetic spectrum,

from radio frequency studies of metals (h̄ω ∼= 2 × 10−8 eV) to γ -radiation studies of the

Mössbauer effect (h̄ω ∼= 2 × 106 eV).

Electrons. Electrons are used to probe solids in a variety of ways. They are injected and

extracted through electrical contacts and tunneling junctions, or used as scattering particles

in electron beams. Typical energies vary with the experiment: ∼1 meV for superconductive

tunneling; ∼1 eV for semiconductor tunneling; ∼ 10−2 to 2 eV for scanning tunneling

microscope investigations of surfaces; ∼ 10 to 100 eV for low-energy electron diffraction

at solid surfaces; and ∼100 keV to 1 MeV for high-energy electron microscopy.

Positrons. Positron annihilation in solids arising from electron–positron interactions

provides useful information for investigating the electronic properties of solids – primar-

ily metals. Photons are emitted when the annihilation occurs and studies of the emitted

radiation give information about the electronic structure.
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9 1.6 Dispersion curves

Neutrons. Neutron scattering has become the standard and preferred technique to study

magnetic structural properties and properties of phonons, magnons, and other collective

excitations in solids, owing to the fact that a neutron is a neutral particle with a magnetic

moment.

Muons and pions. Muons and pions are used as probes, but they are not as commonly

used as most of the other particles discussed here. Muons are more versatile than pions

because of their similarity to heavy electrons. Their magnetic moments and decay modes

can give information not obtained with other methods.

Protons. Protons can be used to study the structures of crystalline solids, primarily by

examining their trajectories in solids.

Atoms. Light atoms and ions are usually employed to study surfaces; sometimes they

can be used to probe deeper into solids. Their role is often similar to that of electrons in

scattering experiments.

1.6 Dispersion curves

All the probe particles can be characterized by a momentum (or wavevector or wavelength)

and an energy (or frequency). The particles are assumed to exist in free space or vacuum.

For massive particles with mass m, the dispersion curve, which is the functional relation

between the energy E and the momentum p or wavevector k, is given by

E =
p2

2m
=

h̄2k2

2m
, (1.2)

or, in the relativistic limit, by

E = (h̄2k2c2 + m2c4)1/2 − mc2, (1.3)

where c is the speed of light. The probing photon in free space (a massless particle) is

described by the dispersion curve, connecting the frequency ω and wavevector k, ω = ck.

These dispersion curves are illustrated in Fig. 1.2. In a solid or liquid, most elementary

excitations are also defined by a wavevector and an energy or frequency. The functional

dependence of the energy on the wavevector, that is, the dispersion curve, constitutes one

of the most fundamental properties of the excitations to be determined.

The quasielectron dispersion curve can be used to distinguish the various types of solids:

metals – no gap in the spectrum and the existence of a Fermi surface; semiconductors and

insulators – an electronic energy gap of order 0.1 to 10 eV, caused by the ion core potential

and uniquely related to specific k-space locations; and superconductors – an energy gap

for creating a quasielectron and quasihole pair of order 2� < 10−1 eV caused by dynamic

interactions of the electrons.

Some examples of dispersion curves for quasiparticles are shown in Fig. 1.3. The quasi-

electrons and holes in metals (Fig. 1.3(a)) have excitation energies which start from zero.

Excitations with zero energy define a surface in k-space known as the Fermi surface. For
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Figure 1.2 Dispersion curves for probe particles. (a) Free particle of massm. (b) Photons in vacuum.

semiconductors, the excitation spectrum has a different starting value for electrons and

holes, which depends on the chemical potential μ (or EF) of the system. Silicon is used

as an example in Fig. 1.3(b). The lowest-energy electron excitation is at a well-defined

k-vector, k = kcb, and the lowest-energy hole state is at k = kvb. For the silicon example,

kvb = 0, while kcb has a finite value along the (100) direction of k-space, and the mini-

mum energy required to create a quasielectron and a hole is 1.1 eV. This is the minimum

bandgap Eg for silicon.

Superconducting quasiparticle spectra also exhibit an energy gap. The minimum energy

for creating both a superconducting quasielectron and quasihole requires an energy of 2�.

This is usually a much smaller gap than in semiconductors (2� = 0.3 meV in aluminum),

and it appears at what, in the normal state, was the Fermi surface of the metal. The semi-

conducting and superconducting gaps are of very different natures; their characteristics are

discussed in subsequent chapters.

It is often convenient to choose a specific form for the dispersion curve near local min-

ima or maxima and in other regions where quadratic approximations are appropriate. For

example, in the case of an electron or hole at a band minimum with wavevector k0, it is

convenient to write

E(k) = 1
2
h̄2(k − k0) · A · (k − k0), (1.4)

where the tensor Aij ≡ 1/m∗
ij can be interpreted as an inverse effective mass tensor. For a

free electron, the relation (Eq. (1.4)) holds exactly with

Aij = m−1δij, (1.5)

where m is the free electron mass (see Eq. (1.2) and Fig. 1.2). In solids, effective masses

may differ substantially from the free electron mass. For example, m∗ ∼= 0.01m for quasi-

electrons near the conduction band minimum in InSb. This small m∗ value is caused by

the static crystal potential, which is also responsible for the existence of the energy gap. In

sodium metal, where the Fermi surface is, to a very good approximation, a sphere of radius
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Figure 1.3 Dispersion curves. (a) Quasielectrons and holes in a simple metal, for example, an alkali metal. Quasielectrons are

excited into states E > EF, k > kF, where EF and kF are the Fermi energy and wavevector and kBZ is the wavevector

for the Brillouin zone edge. Hole states are by convention often plotted by the dispersion curve for E < EF and

k < kF. However, since it costs energy to remove an electron to create a hole, the hole branch of the dispersion curve

should be inverted and the energies measured positively with hole energies between zero and EF. (b) Quasielectrons

and holes in a semiconductor. For the case illustrated, the lowest-energy quasielectron wavevector is centered at kcb
at the conduction band minimum, while the lowest-energy hole wavevector is at the valence band maximum

centered near kvb = 0. These two kinds of states are separated by energy gap Eg. As in (a), the hole branch of the

dispersion curve should be inverted, with the energies measured positively. (c) Quasiparticles in a superconductor.

Here the quasielectron and hole branches of (a) are combined. The superconducting gap� for creating a single

quasiparticle appears at kF.

kF, the quasiparticle dispersion curve is given by

E(k) =
h̄2

2m∗
|k2 − k2

F|. (1.6)

Equation (1.6) is valid for both quasielectrons (|k| > kF) and holes (|k| < kF) with an

effective mass of m∗ ∼= 1.25m. This enhancement of 25% over the free electron value is

not caused by the static crystal potential. It arises from the dynamic interactions between

electrons and phonons and interactions among the electrons.

In Fig. 1.4, examples of dispersion curves for collective excitations are given. The

specific properties related to features of particular curves are discussed in later chapters.
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Figure 1.4 Dispersion curves (schematic) for collective excitations. (a) Phonons in a one-dimensional solid with lattice constant a

and two masses per unit cell. (b) Phonons in a three-dimensional solid with one atom/cell. LA, TA1, and TA2 refer to

the longitudinal acoustical mode and the two transverse acoustical modes, respectively. (c) Plasmons in a

three-dimensional metal whereωp is the classical plasma frequency. (d) Phonons and rotons in liquid He-4.

In restricted regions of given spectra, useful analytic approximations are commonly

made. For instance, for each mode α of the acoustic phonon dispersion relation near q = 0,

it is possible to write

h̄ωα = h̄vα|q|, (1.7)

where vα is the speed of sound propagation for mode α.

The determination and interpretation of the dispersion curves for the elementary excita-

tions can be complex. However, a scheme or investigational approach can be outlined. This

approach consists of: (1) defining the bare elementary excitation by means of a Hamilto-

nian formalism; (2) solving the equations of motion to determine the dispersion curves for

the “bare” elementary excitations; (3) solving for the “final” spectrum of the excitations

after including the necessary interactions among the excitations; (4) including the effects

of the external probes and their interactions with the excitations; and (5) solving the new

coupled equations to determine the response functions for the condensed matter system.

In the above scheme, steps (1) and (2) are usually handled by ordinary quantum me-

chanical methods, using the Schrödinger equation appropriate for one body in an external

potential. Steps (3), (4), and (5) are concerned with the many-body aspects that can be
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