Fundamentals of Photonic Crystal Guiding

If you're looking to understand photonic crystals, this systematic, rigorous, and pedagogical introduction is a must. Here you'll find intuitive analytical and semi-analytical models applied to complex and practically relevant photonic crystal structures. You will also be shown how to use various analytical methods borrowed from quantum mechanics, such as perturbation theory, asymptotic analysis, and group theory, to investigate many of the limiting properties of photonic crystals, which are otherwise difficult to rationalize using only numerical simulations.

An introductory review of nonlinear guiding in photonic lattices is also presented, as are the fabrication and application of photonic crystals. In addition, end-of-chapter exercise problems with detailed analytical and numerical solutions allow you to monitor your understanding of the material presented. This accessible text is ideal for researchers and graduate students studying photonic crystals in departments of electrical engineering, physics, applied physics, and mathematics.

Maksim Skorobogatiy is Professor and Canada Research Chair in Photonic Crystals at the Department of Engineering Physics in École Polytechnique de Montréal, Canada. In 2005 he was awarded a fellowship from the Japanese Society for Promotion of Science, and he is a member of the Optical Society of America.

Jianke Yang is Professor of Applied Mathematics at the University of Vermont, USA. He is a member of the Optical Society of America and the Society of Industrial and Applied Mathematics.

Fundamentals of Photonic Crystal Guiding

MAKSIM SKOROBOGATIY¹ JIANKE YANG²

École Polytechnique de Montréal, Canada¹ University of Vermont, USA²

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521513289

© Cambridge University Press 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Skorobogatiy, Maksim, 1974–
Fundamentals of photonic crystal guiding / by Maksim Skorobogatiy and Jianke Yang. p. cm.
Includes index.
ISBN 978-0-521-51328-9
1. Photonic crystals. I. Yang, Jianke. II. Title.
QD924.S56 2008

621.36 - dc22 2008033576

ISBN 978-0-521-51328-9 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> M. Skorobogatiy dedicates this book to his family. He thanks his parents Alexander and Tetyana for never-ceasing support, encouragement, and participation in all his endeavors. He also thanks his wife Olga, his children, Alexander junior and Anastasia, and his parents for their unconditional love.

J. Yang dedicates this book to his family.

1

2

Cambridge University Press 978-0-521-51328-9 - Fundamentals of Photonic Crystal Guiding Maksim Skorobogatiy and Jianke Yang Frontmatter More information

Contents

Preface Acknowledgements		<i>page</i> xi	
Intro	oductior	1	1
1.1	Fabric	ation of photonic crystals	2
1.2	Application of photonic crystals		4
	1.2.1	Photonic crystals as low-loss mirrors: photonic	
		bandgap effects	4
	1.2.2	Photonic crystals for out-of-bandgap operation	10
Refe	erences		11
Ham	iltoniar	n formulation of Maxwell's equations	
(frec	luency	consideration)	14
2.1	Plane-	wave solution for uniform dielectrics	16
2.2	Methods of quantum mechanics in electromagnetism		18
	2.2.1	Orthogonality of eigenstates	19
	2.2.2	Variational principle	20
	2.2.3	Equivalence between the eigenstates of two	
		commuting Hamiltonians	22
	2.2.4	Eigenstates of the operators of continuous and	
		discrete translations and rotations	23
2.3	Properties of the harmonic modes of Maxwell's equations		30
	2.3.1	Orthogonality of electromagnetic modes	32
	2.3.2	Eigenvalues and the variational principle	32
	2.3.3	Absence of the fundamental length scale in Maxwell's	
		equations	34
2.4	Symmetries of electromagnetic eigenmodes		35
	2.4.1	Time-reversal symmetry	35
	2.4.2	Definition of the operators of translation and rotation	35
	2.4.3	Continuous translational and rotational symmetries	38
	2.4.4	Band diagrams	43
	2.4.5	Discrete translational and rotational symmetries	44

viii	Contents				
	2.4.6 Discrete translational symmetry and discrete	50			
	rotational symmetry	52 52			
	2.4.7 Inversion symmetry, mirror symmetry, and other symmetries 2.5 Problems	53 55			
3	One-dimensional photonic crystals – multilayer stacks	59			
	3.1 Transfer matrix technique	59			
	3.1.1 Multilayer stack, TE polarization	59			
	3.1.2 Multilayer stack, TM polarization	61			
	3.1.3 Boundary conditions	62			
	3.2 Reflection from a finite multilayer (dielectric mirror)	63			
	3.3 Reflection from a semi-infinite multilayer (dielectric				
	photonic crystal mirror)	64			
	3.3.1 Omnidirectional reflectors I	68			
	3.4 Guiding in a finite multilayer (planar dielectric waveguide)	69			
	3.5 Guiding in the interior of an infinitely periodic multilayer	70			
	3.5.1 Omnidirectional reflectors II	80			
	3.6 Defect states in a perturbed periodic multilayer: planar	02			
	2.7 Problems	82			
	5.7 FIODEIIIS	80			
4	Bandgap guidance in planar photonic crystal waveguides	93			
	4.1 Design considerations of waveguides with infinitely				
	periodic reflectors	93			
	4.2 Fundamental TE mode of a waveguide with infinitely				
	periodic reflector	96			
	4.3 Infinitely periodic reflectors, field distribution in TM modes	98			
	4.3.1 Case of the core dielectric constant $\varepsilon_{\rm c} < \varepsilon_{\rm h} \varepsilon_{\rm l} / (\varepsilon_{\rm h} + \varepsilon_{\rm l})$	98			
	4.3.2 Case of the core dielectric constant $\varepsilon_1 \ge \varepsilon_c > \varepsilon_h \varepsilon_l / (\varepsilon_h + \varepsilon_l)$	101			
	4.4 Perturbation theory for Maxwell's equations, frequency	102			
	formulation $4.4.1$ Accounting for the observition losses of the waveguide	103			
	4.4.1 Accounting for the absorption losses of the waveguide	104			
	4.5 Perturbative calculation of the modal radiation loss in a	104			
	nhotonic bandgan waveguide with a finite reflector	106			
	4.5.1 Physical approach	106			
	4.5.2 Mathematical approach	108			
5	Hamiltonian formulation of Maxwell's equations for waveguides				
	(propagation-constant consideration)	110			
	5.1 Eigenstates of a waveguide in Hamiltonian formulation	110			
	5.1.1 Orthogonality relation between the modes of a waveguide made				
	of lossless dielectrics	111			

	Со	ntents	i
	5.1.2 Expressions for the modal phase velocity		11-
	5.1.3 Expressions for the modal group velocity		11-
	5.1.4 Orthogonality relation between the modes of a waveguid	le made	11.
	5.2 Perturbation theory for uniform variations in a waveguide diale	otria profila	11.
	5.2 Ferturbation theory for thmorin variations in a waveguide dietect 5.2.1 Perturbation theory for the nondegenerate modes: examp material absorption	ple of	11:
	5.2.2 Perturbation theory for the degenerate modes coupled by	J	11
	perturbation: example of polarization-mode dispersion		12
	5.2.3 Perturbations that change the positions of dielectric inter	faces	12
	5.3 Problems		120
	References		12
6	Two-dimensional photonic crystals		12
	6.1 Two-dimensional photonic crystals with diminishingly small		1.0
	index contrast		12
	6.2 Plane-wave expansion method		13.
	6.2.1 Calculation of the modal group velocity		13
	6.2.2 Finite-wave method in 2D		13
	nhotonic crystals		13
	6.2.4 Perturbative formulation for the photonic crystal		15.
	lattices with small refractive index contrast		138
	6.2.5 Photonic crystal lattices with high-refractive-index contr	rast	142
	6.3 Comparison between various projected band diagrams		142
	6.4 Dispersion relation at a band edge, density of states and		
	Van Hove singularities		144
	6.5 Refraction from photonic crystals		14′
	6.6 Defects in a 2D photonic crystal lattice		143
	6.6.1 Line defects		148
	6.6.2 Point defects		15
	6.7 Problems		16
	References		17
7	Quasi-2D photonic crystals		172
	7.1 Photonic crystal fibers		172
	7.1.1 Plane-wave expansion method		172
	7.1.2 Band diagram of modes of a photonic crystal fiber		170
	7.2 Optically induced photonic lattices7.2.1 Light propagation in low-index-contrast periodic		17
	photonic lattices		173
	7.2.2 Defect modes in 2D photonic lattices with localized defe	ects	18
	7.2.3 Bandgap structure and diffraction relation for the modes	ofa	
	uniform lattice		182

X	Contents	
	7.2.4 Bifurcations of the defect modes from Bloch band edges for	
	localized weak defects	185
	1.2.5 Dependence of the defect modes on the strength of	100
	7.2.6 Defect modes in 2D photonic lattices with poplocalized defects	100
	7.3 Photonic crystal slabs	192
	7.3 1 Geometry of a photonic-crystal slab	195
	7.3.2 Figenmodes of a photonic-crystal slab	195
	7.3.3 Analogy between the modes of a photonic-crystal slab and the	177
	modes of a corresponding 2D photonic crystal	200
	7 3 4 Modes of a photonic-crystal slab waveguide	200
	7.4 Problems	207
	References	208
8	Nonlinear effects and gap-soliton formation in periodic media	210
	8.1 Solitons bifurcated from Bloch bands in 1D periodic media	211
	8.1.1 Bloch bands and bandgaps	211
	8.1.2 Envelope equations of Bloch modes	212
	8.1.3 Locations of envelope solitons	215
	8.1.4 Soliton families bifurcated from band edges	216
	8.2 Solitons bifurcated from Bloch bands in 2D periodic media	218
	8.2.1 Two-dimensional Bloch bands and bandgaps of linear	
	neriodic systems	219
	8.2.2 Envelope equations of 2D Bloch modes	220
	8.2.3 Families of solitons bifurcated from 2D band edges	223
	8.3 Soliton families not bifurcated from Bloch bands	226
	8.4 Problems	227
	References	228
	Problem solutions	230
	Chapter 2	230
	Chapter 3	236
	Chapter 5	230
	Chapter 6	246
	Chapter 7	257
	Chapter 8	260

Preface

The field of photonic crystals (aka periodic photonic structures) is experiencing an unprecedented growth due to the dramatic ways in which such structures can control, modify, and harvest the flow of light.

The idea of writing this book came to M. Skorobogatiy when he was developing an introductory course on photonic crystals at the Ecole Polytechnique de Montréal/ University of Montréal. The field of photonic crystals, being heavily dependent on numerical simulations, is somewhat challenging to introduce without sacrificing the qualitative understanding of the underlying physics. On the other hand, exactly solvable models, where the relation between physics and quantitative results is most transparent, only exist for photonic crystals of trivial geometries. The challenge, therefore, was to develop a presentational approach that would maximally use intuitive analytical and semi-analytical models, while applying them to complex and practically relevant photonic crystal structures.

We would like to note that the main purpose of this book is not to present the latest advancements in the field of photonic crystals, but rather to give a systematic, logical, and pedagogical introduction to this vibrant field. The text is largely aimed at students and researchers who want to acquire a rigorous, while intuitive, mathematical introduction into the subject of guided modes in photonic crystals and photonic crystal waveguides. The text, therefore, favors analysis of analytically or semi-analytically solvable problems over pure numerical modeling. We believe that this is a more didactical approach when trying to introduce a novice into a new field. To further stimulate understanding of the book content, we suggest many exercise problems of physical relevance that can be solved analytically.

In the course of the book we extensively use the analogy between the Hamiltonian formulation of Maxwell's equations and the Hamiltonian formulation of quantum mechanics. We present both frequency and propagation-constant based Hamiltonian formulations of Maxwell's equations. The latter is particularly useful for analyzing photonic crystal-based linear and nonlinear waveguides and fibers. This approach allows us to use a well-developed machinery of quantum mechanical semi-analytical methods, such as perturbation theory, asymptotic analysis, and group theory, to investigate many of the limiting properties of photonic crystals, which are otherwise difficult to investigate based only on numerical simulations.

M. Skorobogatiy has contributed Chapters 2, 3, 4, 5, and 6 of this book, and J. Yang has contributed Chapter 8. Chapters 1 and 7 were co-authored by both authors.

Acknowledgements

M. Skorobogatiy would like to thank his graduate and postgraduate program mentors, Professor J. D. Joannopoulos and Professor Y. Fink from MIT, for introducing him into the field of photonic crystals. He is grateful to Professor M. Koshiba and Professor K. Saitoh for hosting him at Hokkaido University in 2005 and for having many exciting discussions in the area of photonic crystal fibers. M. Skorobogatiy acknowledges the Canada Research Chair program for making this book possible by reducing his teaching load.

J. Yang thanks the funding support of the US Air Force Office of Scientific Research, which made many results of this book possible. He also thanks the Zhou Pei-Yuan Center for Applied Mathematics at Tsinghua University (China) for hospitality during his visit, where portions of this book were written. Both authors are grateful to their graduate and postgraduate students for their comments and help, while this book was in preparation. Especially, J. Yang likes to thank Dr. Jiandong Wang, whose help was essential for his book writing.