Lung Mechanics

With mathematical and computational models furthering our understanding of lung mechanics, function, and disease, this book provides an all-inclusive introduction to the topic from a quantitative standpoint. Focusing on inverse modeling, the reader is guided through the theory in a logical progression, from the simplest models up to state-of-the-art models that are both dynamic and nonlinear.

Key tools used in biomedical engineering research, such as regression theory, linear and nonlinear systems theory, and the Fourier transform, are explained. Derivations of important physical relationships, such as the Poiseuille equation and the wave speed equation, from first principles are also provided. Examples of applications to experimental data illustrate physiological relevance throughout, whilst problem sets at the end of each chapter provide practice and test reader comprehension. This book is ideal for biomedical engineering and biophysics graduate students and researchers wishing to understand this emerging field.

Jason H. T. Bates is currently a Professor of Medicine and Molecular Physiology and Biophysics at the University of Vermont College of Medicine, and a Member of the Pulmonary Division at Fletcher Allen Health Care. He is also a Member of the American Physiological Society, the American Thoracic Society, and the Biomedical Engineering Society, and an elected Senior Member of the IEEE Engineering in Medicine and Biology Society. Dr. Bates has published more than 190 peer-reviewed journal papers in addition to numerous book chapters, conference abstracts, and other articles. In 1994 he was awarded the Doctor of Science degree by Canterbury University, New Zealand, and in 2002 he was elected a Fellow of the American Institute for Medical and Biological Engineering.

Cambridge University Press & Assessment 978-0-521-50960-2 — Lung Mechanics Jason H. T. Bates Frontmatter <u>More Information</u>

Lung Mechanics

An Inverse Modeling Approach

JASON H. T. BATES

University of Vermont

Cambridge University Press & Assessment 978-0-521-50960-2 — Lung Mechanics Jason H. T. Bates Frontmatter <u>More Information</u>

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521509602

© J. Bates 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2009

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data Bates, Jason H. T. Lung mechanics / Jason H. T. Bates. p. cm. Includes bibliographical references and index. ISBN 978-0-521-50960-2 (hardback) 1. Lungs. 2. Human mechanics. 3. Respiration. I. Title. QP121.B35 2009 611'.24 – dc22 2009011365

ISBN 978-0-521-50960-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Dedicated with love to my wife, Nancy MacGregor, for her constant support.

1

2

Cambridge University Press & Assessment 978-0-521-50960-2 — Lung Mechanics Jason H. T. Bates Frontmatter <u>More Information</u>

Contents

Preface		<i>page</i> xi
Notation		xiii
Intro	oduction	1
1.1	The importance of lung mechanics	1
1.2	Anatomy and physiology	2
	1.2.1 Gas exchange	2
	1.2.2 Control of breathing	4
	1.2.3 Lung mechanics	5
1.3	Pathophysiology	6
	1.3.1 Obstructive lung disease	6
	1.3.2 Restrictive lung disease	7
1.4	How do we assess lung mechanical function?	8
	1.4.1 Inverse modeling	9
	1.4.2 Forward modeling	11
	1.4.3 The modeling hierarchy	12
	Further reading	14
Colle	ecting data	15
2.1	Measurement theory	15
	2.1.1 Characteristics of transducers	15
	2.1.2 Digital data acquisition	18
	2.1.3 The sampling theorem and aliasing	20
2.2	Measuring pressure, flow, and volume	22
	2.2.1 Pressure transducers	22
	2.2.2 Measuring lateral pressure	23
	2.2.3 Esophageal pressure	25
	2.2.4 Alveolar pressure	27
	2.2.5 Flow transducers	28
	2.2.6 Volume measurement	30
	2.2.7 Plethysmography	32
2.3	Experimental scenarios	34
	Problems	35

© in this web service Cambridge University Press & Assessment

viii	iii Contents			
3	The linear single-compartment model 37			
	2.1 Establishing the model	27		
	3.1.1 Model structure	37		
	3.1.2 The equation of motion	38		
	3.2 Fitting the model to data	44		
	3.2.1 Parameter estimation by least squares	44		
	3.2.2 Estimating confidence intervals	47		
	3.2.3 An example of model fitting	49		
	3.2.4 A historical note	52		
	3.3 Tracking model parameters that change with time	53		
	3.3.1 Recursive multiple linear regression	54		
	3.3.2 Dealing with systematic residuals	57		
	Problems	61		
4	Resistance and elastance	62		
	4.1 Physics of airway resistance	62		
	4.1.1 Viscosity	63		
	4.1.2 Laminar and turbulent flow	63		
	4.1.3 Poiseuille resistance	65		
	4.1.4 Resistance of the airway tree	68		
	4.2 Tissue resistance	71		
	4.3 Lung elastance	72		
	4.3.1 The effect of lung size	72		
	4.3.2 Surface tension	73		
	4.4 Resistance and elastance during bronchoconstriction	75		
	4.4.1 Dose-response relationship	76		
	4.4.2 Time-course of bronchoconstriction	78		
	4.4.3 Determinants of airways responsiveness	79		
	Problems	81		
5	Nonlinear single-compartment models	82		
	5.1 Flow-dependent resistance	82		
	5.2 Volume-dependent elastance	85		
	5.2.1 Nonlinear pressure-volume relationships	85		
	5.2.2 Mechanisms of elastic nonlinearity	87		
	5.3 Choosing between competing models	91		
	5.3.1 The <i>F</i> -ratio test	93		
	5.3.2 The Akaike criterion	95		
	Problems	95		
6	Flow limitation	97		
	6.1 FEV ₁ and FVC	97		
	6.2 Viscous mechanisms	98		

			Contents	ix
	6.3	Bernoulli effect		99
	6.4	Wave speed		101
		Problems		106
7	Linea	ar two-compartment models		108
	7.1	Passive expiration		108
	7.2	Two-compartment models of heterogeneous ventilation		109
		7.2.1 The parallel model		111
		7.2.2 The series model		114
	7 2	1.2.3 Electrical analogs		110
	7.5	A model of ussue viscoelasticity		11/
	7.4	Resolving the model ambiguity problem		119
	7.5	Fitting the two-compartment model to data		122
	7.0	Problems		124
8	The	general linear model		127
	8.1	Linear systems theory		127
		8.1.1 Linear dynamic systems		128
		8.1.2 Superposition		130
		8.1.3 The impulse and step responses		130
		8.1.4 Convolution		133
	8.2	The Fourier transform		135
		8.2.1 The discrete and fast Fourier transforms		135
		8.2.2 The power spectrum		140
		8.2.3 The convolution theorem for Fourier transforms		140
	8.3	Impedance		142
		8.3.1 The forced oscillation technique		143
		8.3.2 A word about complex numbers		145
		8.3.3 Signal processing		146
		Problems		148
9	Inve	rse models of lung impedance		150
	9.1	Equations of motion in the frequency domain		150
	9.2	Impedance of the single-compartment model		151
		9.2.1 Resonant frequency and inertance		152
		9.2.2 Regional lung impedance		156
	9.3	Impedance of multi-compartment models		158
		9.3.1 The viscoelastic model		158
		9.3.2 Effects of ventilation heterogeneity		109
		9.3.5 The six-element model		102
	0.4	A coustic impedance		104 166
	9.4	Problems		169
		1 100151115		100

X	Conte	nts	
10	Constant phase model of impedance		169
	10.1	Genesis of the constant phase model	169
		10.1.1 Power-law stress relaxation	170
		10.1.2 Fitting the constant phase model to lung impedance	172
		10.1.3 Physiological interpretation	174
	10.2	Heterogeneity and the constant phase model	175
		10.2.1 Distributed constant phase models	176
		10.2.2 Heterogeneity and hysteresivity	177
	10.3	The fractional calculus	181
	10.4	Applications of the constant phase model	183
		Problems	186
11	Nonlii	near dynamic models	188
	11.1	Theory of nonlinear systems	188
		11.1.1 The Volterra series	188
		11.1.2 Block-structured nonlinear models	189
	11.2	Nonlinear system identification	190
		11.2.1 Harmonic distortion	191
		11.2.2 Identifying Wiener and Hammerstein models	193
	11.3	Lung tissue rheology	193
		11.3.1 Quasi-linear viscoelasticity	194
		11.3.2 Power-law stress adaptation	195
		Problems	200
12	Epilog	gue	201
	Refer	ences	207
	Index		218

Preface

Viewing the lungs as a mechanical system has intrigued engineers, physicists, and mathematicians for decades. Indeed, the field of lung mechanics is now mature and highly quantitative, making wide use of sophisticated mathematical and computational methods. Nevertheless, most books on lung mechanics are aimed primarily at physiologists and medical professionals, and are therefore somewhat lacking in the mathematical treatment necessary for a rigorous scientific introduction to the subject. This book attempts to fill that gap. Accordingly, some familiarity with the methods of applied mathematics, including basic calculus and differential equations, is assumed. The material covered is suitable for a first-year graduate course in bioengineering. I hope, however, it will also be accessible to motivated biologists and physiologists.

This book focuses on inverse models of lung mechanics, and is organized around the principle that these models can be arranged in a hierarchy of complexity. Chapter 1 expands on this concept and introduces the adjunct notion of forward modeling. It also sets the scene with a brief overview of pulmonary physiology in general. Chapter 2 attends to the fact that all the mathematical modeling skill in the world is for nought without good experimental data. Accordingly, this chapter is devoted to the key experimental methodologies that have provided the data on which the models described in subsequent chapters are based. It can thus be skipped without loss of continuity and referred back to when issues related to experimental validation of models arise. The discussion of inverse lung models begins in earnest in Chapter 3, which develops the theory behind the simplest plausible physiological model of all – a single elastic compartment served by a single flow-resistive airway. This represents the most basic level of inverse-model complexity, but one which still has a very useful physiological interpretation, discussed in Chapter 4. In proceeding to the second level of model complexity, we have a choice to make; is it more appropriate to require the elements of the simple model to be nonlinear, or should we add a second linear compartment? There is no simple answer to this question, so we proceed by examining nonlinear extensions of the basic model in Chapter 5 and go specifically into the nonlinear phenomenon of expiratory flow limitation in Chapter 6. The alternative to introducing nonlinearity, namely adding a second linear compartment, is developed in Chapter 7. This segues into the third level of complexity represented by the general linear dynamic model and the concept of impedance, discussed in Chapter 8. Various models of lung impedance are discussed in Chapter 9, while Chapter 10 is devoted to a particular example currently in widespread use, known as the constant phase model. Chapter 11 deals with the fourth and final level

Cambridge University Press & Assessment 978-0-521-50960-2 — Lung Mechanics Jason H. T. Bates Frontmatter <u>More Information</u>

Preface

xii

of complexity, that of the nonlinear dynamic model. Chapter 12 concludes the book with a brief overview in which the various inverse models considered in previous chapters are brought together into a unified picture.

In addition to covering the field of lung mechanics, this book also has a second goal. This is to exemplify how quantitative methods from the physical sciences can be used to advance knowledge in a biomedical subject of significant practical importance for human health. Lung mechanics is a prime example of this because it is so well suited to quantitative investigation, being essentially a manifestation of classical Newtonian physics in the body. However, there are many other areas of biomedical research that benefit from use of the same methods, which therefore have wide applicability. Accordingly, significant attention is paid to the explanation of these methods, which include multiple linear regression and its recursive formulation, statistical tests of model order, linear and nonlinear system identification, and the Fourier transform. Also, when the physiological interpretation of lung models is discussed, formulae encapsulating relevant physical processes are derived from first principles where possible. This is to try to minimize the uncomfortable sense of mystery that inevitably arises when any mathematical formula has to be taken on trust.

The material presented in this book stems from work carried out in numerous laboratories around the world, as well as research from my own laboratory over the past 25 years both at the Meakins-Christie Laboratories of McGill University and subsequently at the Vermont Lung Center of the University of Vermont College of Medicine. Some of what appears is thus the result of interactions I have had the privilege to enjoy with countless mentors, colleagues, and students. Space does not permit me to list everyone, much as I would like to. However, several friends and associates graciously read through drafts of this book and gave me their invaluable comments. On this account, my thanks go to (in alphabetical order) Gil Allen, Sharon Bullimore, Anne Dixon, Charlie Irvin, David Kaminsky, Anne-Marie Lauzon, and Bela Suki.

Notation

A	1) parameter in exponential pressure-volume relationship of lung
	2) area
	3) amplitude
A_0	equilibrium area of elastic tube
A _i	1) coefficient of exponential term
r L	2) coefficient of term in general second-order equation of motion
A	vector of parameter values
\hat{A}	estimate of parameter vector
A-D	analog to digital
AICc	corrected Akaike criterion
ΔA_i	change in the <i>i</i> th parameter value
a	parameter in sigmoidal pressure-volume relationship of lung
a_i	parameters in a series
В	parameter of exponential pressure-volume relationship of lung
B_i	coefficient of general second-order equation of motion
b	parameter in sigmoidal pressure-volume relationship of lung
b_i	parameter in a general linear differential equation
С	constant of integration
$C_{P,\dot{V}}$	cross-spectral density between pressure and flow
$C_{P,P}$	auto-spectral density of pressure
CD	coefficient of determination
С	parameter in sigmoidal pressure-volume relationship of lung
D	length of dashpot in tissue model
Ε	elastance
E_A	elastance of lung region under an alveolar capsule
E_{cw}	chest wall elastance
E_L	lung elastance
E_{rs}	respiratory system elastance
E_t	elastance of lung tissue
E_0	elastance of homogeneous lung model
E_1	volume-independent term in P_{el}
E_2	volume-dependent term in P_{el}
$E_i, i = 1, 2$	elastance of <i>i</i> th compartment
ΔE	increase in elastance due to mechanical heterogeneity

xiv	Notation	
	F{} f	operation of Fourier transformation on bracketed quantity frequency (Hz)
	f(x)	general nonlinear function of x
	FEV_1	volume of air exhaled in the first second of a forced expiration
	FVC	forced vital canacity
	G	tissue damping in the constant phase model
	H	tissue elastance in the constant phase model
	H	Heaviside step function
	Hmin	minimum value of H in the distributed constant phase model
	Hman	maximum value of H in the distributed constant phase model maximum value of H in the distributed constant phase model
	h	impulse response function
	h.	kernels in the Volterra series
	I	inertance
	I	inertance of airway gas
	L.	inertance of lung tissue
	I	identity matrix
	Ĵ	cost function for Poiseuille flow formula
	ĸ	parameter in exponential pressure-volume relationship of lung
	K_1	flow-independent term of the Rohrer equation for flow resistance
	K ₂	flow-dependent term of the Rohrer equation for flow resistance
	k	1) spring constant in model of lung tissue strin
	iv .	2) nower-law exponent
	L	total length of model of lung tissue strin
	1	length
	M	mass
	M	covariance matrix for recursive multiple linear regression
	$\frac{m}{MSR}$	mean squared residual
	m	number of model parameters
	N	1) distribution of string lengths in model of lung tissue strin
		2) number of series springs in tissue model
	Ν	vector of noise values in dependent variable
	$\frac{1}{n}$	number of data points
	P	pressure
	\bar{p}	mean pressure
	$\stackrel{P}{P}$	vector of pressure measurements
	\overline{P}_{4}	alveolar pressure
	P_{ao}	airway opening pressure
	P_h	Bernoulli pressure
	P_{hor}	plethysmographic pressure
	P_{el}	elastic pressure
	P_{es}	esophageal pressure
	Pimpulse	impulse response in pressure
	P_i	pressure at airway junction
	$P_{n'}$	pleural pressure
	P^{i}	L F TOTAL

Cambridge University Press & Assessment 978-0-521-50960-2 — Lung Mechanics Jason H. T. Bates Frontmatter <u>More Information</u>

Notation

XV

P _{step}	step response in pressure
P_{tm}	airway transmural pressure
P_{tp}	transpulmonary pressure
P_0	1) baseline pressure
	2) initial pressure
P_i	pressure in <i>i</i> th compartment
PEEP	positive end-expiratory pressure
ΔP	change in pressure
ΔP_d	pressure drop across daughter airway
ΔP_{dif}	pressure change due to stress adaptation
ΔP_{init}	initial pressure change following flow interruption
ΔP_p	pressure drop across parent airway
р	dummy variable of integration
<u>Q</u>	matrix of noise values in independent variables
\overline{R}	1) resistance
	2) real part of impedance
R_A	airway resistance leading into the lung from under an alveolar
	capsule
R_{aw}	airway resistance
R_c	resistance of common airway
R_{cw}	chest wall resistance
R_d	resistance of daughter airway
R_g	real part of thoracic gas impedance
R _{hole}	resistance of hole in pleural surface
R_L	lung resistance
R_N	Newtonian resistance of the constant phase model
R_p	resistance of parent airway
R _{rs}	respiratory system resistance
R_t	tissue resistance
R_0	resistance of homogeneous lung model
$R_i, i = 1, 2$	resistance of <i>i</i> th compartment
Re	Reynolds number
ΔR	increase in resistance due to mechanical heterogeneity
r	radius
r_0	equilibrium radius of elastic tube
S	stress in viscoelastic tissue model
SSR	sum of squared residuals
Т	tension
t	time
Δt	time step
u	dummy variable of integration representing time
V	volume
V_i	volume of <i>i</i> th compartment
	-

xvi	Notation	
	υ	1) velocity
		2) voltage
	\dot{V}	flow
	$\dot{V}_{ m max}$	maximal expiratory flow
	\ddot{V}	rate of change of flow
	ΔV	change in volume
	V_{TG}	thoracic gas volume
	Ŵ	rate of energy dissipation in laminar flow of fluid
	Х	imaginary part of impedance
	X_{aw}	imaginary part of airway impedance
	X_g	imaginary part of thoracic gas impedance
	X_t	imaginary part of tissue impedance
	\underline{X}	matrix of independent variables
	$\frac{-}{x}$	extension of spring in Maxwell body
	Ζ	impedance
	Z_{aw}	impedance of airways
	Z_g	impedance of thoracic gas
	Z_{in}	input impedance
	Z_t	impedance of tissues
	Z_{tr}	transfer impedance
	Φ	coherence
	α	1) Womersley number
		2) coefficient of exponential force-length relationship of lung tissue
		3) width of axial strip of airway wall
		4) sinusoidal coefficient
		5) exponent of frequency in the constant phase model
		6) exponent of elastic force in tissue
	β	1) coefficient of exponential force-length relationship of lung tissue
	,	2) sinusoidal coefficient
		3) exponent of resistive force in tissue model
	δ	1) asymmetry index in orders of the airway tree
		2) Dirac delta-function
	ε	strain
	λ	forgetting factor for recursive algorithms
	σ	stress
	σ^2	variance
	$\hat{\sigma}^2$	estimate of variance
	ϕ	phase
	'n	hysteresivity
	μ.	viscosity
	~ 0	density
	~ τ	time-constant
	<i>w</i>	angular frequency
	ω	angular nequency