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_1_

Introduction to Symmetries

| know it when | see it.

(Justice Potter Stewart: Jacoblellis v. Ohio, 378 U.S. 184, 197 [1964])

1.1 Symmetries of Planar Objects

In order to understand symmetries of differential equations, it is helpful to
consider symmetries of simpler objects. Roughly speaking, a symmetry of a
geometrical object is a transformation whose action leaves the object apparently
unchanged. For instance, consider the result of rotating an equilateral triangle
anticlockwise about its centre. After a rotation of/3, the triangle looks the
same asitdid before the rotation, so this transformation is a symmetry. Rotations
of 47 /3 and Zr are also symmetries of the equilateral triangle. In fact, rotating
by 2r is equivalent to doing nothing, because each pointis mapped toitself. The
transformation mapping each point to itself is a symmetry of any geometrical
object: it is called thérivial symmetry

Symmetries are commonly used to classify geometrical objects. Suppose
that the three triangles illustrated in Fig. 1.1 are made from some rigid material,
with indistinguishable sides. The symmetries of these triangles are readily found
by experiment. The equilateral triangle has the trivial symmetry, the rotations
described above, and flips about the three axes marked in Fig. 1.1(a). These
flips are equivalent to reflections in the axes. So an equilateral triangle has
six distinct symmetries. The isoceles triangle in Fig. 1.1(b) has two: a flip (as
shown) and the trivial symmetry. Finally, the triangle with three unequal sides
in Fig. 1.1(c) has only the trivial symmetry.

There are certain constraints on symmetries of geometrical objects. Each
symmetry has a unique inverse, which is itself a symmetry. The combined
action of the symmetry and its inverse upon the object (in either order) leaves
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(a) (b) (c)

Fig. 1.1. Some triangles and their symmetries.

the object unchanged. For example, Ifletlenote a rotation of the equilateral
triangle by 2r/3. Then' ! (the inverse of") is a rotation by 4 /3.

For simplicity, we restrict attention to symmetries that amooth (This
somewhat technical requirement is not greatly restrictive, and it frees us from
the need to consider pathological examples.X denotes the position of a
general point of the object, and if

I': X~ X(X)

is any symmetry, then we assume tRas infinitely differentiable with respect
to x. Moreover, sincd 1 is also a symmetry is infinitely differentiable with
respect tox. ThusT is a (C*) diffeomorphismthat is, a smooth invertible
mapping whose inverse is also smooth.

Symmetries are also required to $eucture preservinglt is usual for ge-
ometrical objects to have some structure which (loosely speaking) describes
what the object is made from. To use an analogy from continuum mechanics,
the structure is the constitutive relation for the object. Earlier, we considered
symmetries of triangles made from a rigid material. The only transformations
under which a triangle remains rigid are those which preserve the distance
between any two points on the triangle, namely translations, rotations, and
reflections (flips). These transformations are the only possible symmetries, be-
cause all other transformations fail to preserve the rigid structure. However,
if the triangles are made from an elastic material such as rubber, the class
of structure-preserving transformations is larger, and new symmetries may be
found. For example, a triangle with three unequal sides can be stretched into an
equilateral triangle, then rotated by 23 about its centre, and finally stretched
S0 as to appear to have its original shape. This transformation is not a symmetry
of a rigid triangle. Clearly, the structure associated with a geometrical object
has a considerable influence upon the set of symmetries of the object.
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In summary, a transformation is a symmetry if it satisfies the following:

(S1) The transformation preserves the structure.

(S2) The transformation is a diffeomorphism.

(S3) The transformation maps the object to itself [e.g., a planar object in the
(X, y) plane and its image in thg, §) plane are indistinguishable].

Henceforth, we restrict attention to transformations satisfying (S1) and (S2).
Such transformations are symmetries if they also satisfy (S3), which is called
thesymmetry condition

Arigid triangle has a finite set of symmetries. Many objects have an infinite
set of symmetries. For example, the (rigid) unit circle

X +y?=1
has a symmetry
I, (X, y) = (X, §) = (xcose — ysing, XSine + Yy €0ss)
for eache € (—m, ]. In terms of polar coordinates,
T, : (cost, sing) — (cog6b + ¢), sin@ + ¢)),

as shownin Fig. 1.2. Hence the transformation is a rotationdipout the centre

of the circle. It preserves the structure (rotations are rigid), and it is smooth and
invertible (the inverse of a rotation hyis a rotation by—¢). To prove that the
symmetry condition (S3) is satisfied, note that

)'22_’_3*/2:)(2

Lt |

Fig. 1.2. Rotation of the unit circle.
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and therefore
24+92=1  when xX’+y?>=1.

The unit circle has other symmetries, namely reflections in each straight line
passing through the centre. It is not difficult to show that every reflection is
equivalent to the reflection

FR : (X’ y) = (_Xs y)

followed by a rotatior,.

The infinite set of symmetrids. is an example of ane-parameter Lie group
This class of symmetries isimmensely useful and is the key to constructing exact
solutions of many differential equations. Suppose that an object occupying a
subset oRRN has an infinite set of symmetries

N

xS 3 ..., xNs e, s=1,...,N,

wheres is a real parameter, and that the following conditions are satisfied.

(L1) g is the trivial symmetry, so th&® = x% wheng = 0.

(L2) T, is a symmetry for every in some neighbourhood of zero.

(L3) I'sI', = I's.. for everys, ¢ sufficiently close to zero.

(L4) Each%®may be represented as a Taylor serieg(in some neighbourhood
of ¢ = 0), and therefore

S, xN ey = xS egs(xh, L xN) + 0D, s=1,...,N.

Then the set of symmetridd. is a one-parameter local Lie group. The term
“local” (which we shall usually omit hereafter) refers to the fact that the con-
ditions need only apply in some neighbourhoodsof 0. Furthermore, the
maximum size of the neighbourhood may dependans = 1,..., N. The
term “group”is used because the symmetfigsatisfy the axioms of agroup, at
least fore sufficiently close to zero. In particular, (L3) implies thgt! = T'_,.
Conditions (L1) to (L4) are slightly more restrictive than is necessary, but they
allow us to start solving differential equations without becoming entangled in
complexities.

Symmetries belonging to a one-parameter Lie group depend continuously
on the parameter. As we have seen, an object may also have symmetries that
belong to a discrete group. Thediscrete symmetriesannot be represented by
a continuous parameter. For example, the set of symmetries of the equilateral
triangle has the structure of the dihedral group\Bhereas the two symmetries
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of the isoceles triangle form the cyclic grodp. Discrete symmetries are useful
in many ways, as described at the end of the book. Until then, we shall focus on
parametrized Lie groups of symmetries, which are easier to find and use. For
brevity, we refer to such symmetrieslag symmetries

For most of the time, we shall study the functiotfdirectly, without refer-
ence to any ideas from group theory. Therefore it is convenient to simplify the
notation by abbreviating

Ce:o <L x> & N =

to

&t

LNy =

Suffix notation is useful for stating general results, but we shall avoid using it
in examples, as far as possible. Variables will be named ... in preference
tox, x2, ...

1.2 Symmetries of the Simplest ODE

What are the symmetries of ordinary differential equations (ODESs)? To begin
to answer this question, consider the simplest ODE of all, namely

dy
— =0. 1.1
dx (1.1)
The set of all solutions of the ODE is the set of lines

y(X) =c, ceR,

which fills the(x, y) plane. The ODE (1.1) is represented geometrically by the
set of all solutions, and so any symmetry of the ODE must necessarily map the
solution set to itself. More formally, the symmetry condition (S3) requires that
the set of solution curves in th&, y) plane must be indistinguishable from its
image in thgX, ¥) plane, and therefore
dy dy
— =0 when —= =0. 1.2

dx dx (1.2
A smooth transformation of the plane is invertible if its Jacobian is nonzero, so
we impose the further condition

Ry — Ryx # 0. (1.3)
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A+ a1+

Fig. 1.3. Solutions of (1.1) transformed by a scaling, (1.5).

(Throughout the book, variable subscripts denote partial derivativesXg.g.,
denotesg—i .) A particular solution curve will be mapped to a (possibly different)
solution curve, and so

y(x,c)=8&c), VceR (1.4)
Herex is regarded as a function &fandc that is obtained by inverting
X = X(X, C).

The ODE (1.1) has many symmetries, some of which are obvious from
Fig. 1.3. There are discrete symmetries, such as reflections inghdy axes.
Lie symmetries include scalings of the form

X, 9 = (%, €y), e eR. (1.5)

[Figure 1.3 depicts the effect of the scalings (1.5) on only a few solution curves;
if all solution curves could be shown, the two halves of the figure would be
identical.] Every translation,

X, 9 =X+e1,y+e), e1, &2 € R, (1.6)

is a symmetry. The set of all translations depends upon two paramgtars]

£2. By settinge; to zero, we obtain the one-parameter Lie group of translations
in they direction. Similarly, the one-parameter Lie group of translations in the
x direction is obtained by setting to zero. The set of translations (1.6) is a
two-parameter Lie group, which can be regarded as a composition of the one-
parameter Lie groups of translations parametrizedibgnd e, respectively.
Roughly speaking, symmetries belonging toRuparameter Lie group can be
regarded as a composition of symmetries frRrane-parameter Lie groups.
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Not every one-parameter Lie group is useful. For example, a translation (1.6)
maps a solution curvg = c to the curvey = ¢ + &,. If &2 = 0, any solution
curve is mapped to itself by the symmetry. This is obvious, because translations
in thex direction move points along the curves of constarfymmetries that
map every solution curve to itself are describedragal, even if they move
points along the curves.

The ODE (1.1) is extremely simple, and so all of its symmetries can be found.
Differentiating (1.4) with respect t®, we obtain

¥x(x,©0=0,  VceR.
Therefore, taking (1.3) into account, the symmetries of (1.1) are of the form

&, 9 = (fx, ¥, 9(y), fx#0. gy #0, 1.7

where f andg are assumed to be smooth functions of their arguments. The
ODE has a very large family of symmetries. (Perhaps surprisingly, so does
every first-order ODE.)

We were able to use the known general solution of (1.1) to derive (1.2), which
led to the result (1.7). However, we could also have obtained this result directly
from (1.2), as follows. On the solution curvesis a function ofx, and hence
X(X, y) andy(x, y) may be regarded as functionsxfThen, by the chain rule,
(1.2) can be rewritten as

N dy

dy Dyy
Gy _2_p hen &Y o
dx ~ DX when gx =

whereDy denotes théotal derivativewith respect to:
Dy =0x+Ydy+y'dy +---. (1.8)

(The following notation is used throughout the bo@k:denotes%, etc;y’
denote%’, etc.) Therefore (1.2) amounts to

7¥X+y¥y =0 when y =0,
R + YRy
that is,
R _q
Xx

Hence (1.7) holds. The advantage of using the symmetry condition in the form
(1.2) is that one can obtain information about the symmetries without having
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to know the solution of the differential equation in advance. This observation
is fundamental, for it suggests that it might be possible to find symmetries of a
given differential equation whose solution is unknown.

1.3 The Symmetry Condition for First-Order ODEs

The symmetries of/ = 0 are easily visualized, because the solution curves
are parallel lines. It may not be possible to find symmetries of a complicated
first-order ODE by looking at a picture of its solution curves. Nevertheless, the
symmetry condition requires that any symmetry maps the set of solution curves
in the (x, y) plane to an identical set of curves in ttie §) plane. Consider a
first-order ODE,

d

d—z(/ =w(X,Y). (1.9
(For simplicity, we shall restrict attention to regions of the plane in whidk
a smooth function of its arguments.) The symmetry condition for (1.9) is

dy

o o dy
® = (X, V) when ax = w(X,Y). (12.10)

As before, we regarg as a function ok (and a constant of integration) on the
solution curves. Then (1.10) yields

Dxy  W+VYy o dy
h — .
DR~ %t vR v, =w(X, Y when = = w(X,Y)

Therefore the symmetry condition for the first-order ODE (1.9) is equivalent to
the constraint

Y + (X, Y) ¥y o o
— = =w((X,Y), 1.11
Ry + w (X, y))A(y 0.3 ( )

together with the requirement that the mapping should be a diffeomorphism. It
may be possible to determine some or all of the symmetries of a given ODE
from (1.11). One approach is use amsatz that is, to look for a symmetry of

a particular form.

Example 1.1 Consider the ODE

dy

=Y (1.12)
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The constraint (1.11) implies that every symmetry of (1.12) satisfies the partial
differential equation (PDE)

Y% + y¥y

2 tysy

Rather than trying to find the general solution of this PDE, let us see whether
or not there are symmetries that satisfy a simple ansatz. For example, are there
any symmetries mappingto itself? If so, then

X, §) = XX, ¥, Y,
and the constraint (1.11) reduces to

_y
Ry + YRy

Therefore (taking (1.3) into account),
f(x‘i‘y)?y:l, 5\()(#0.

There are many symmetries of this type; the simplest are the Lie symmetries
&9 =KX+ey, eeR (1.13)

Earlier, we found that translations in tledirection are trivial symmetries
of y = 0; are they also trivial symmetries of (1.12)? The general solution of
(1.12) is easily found; it is

y =g €%, ¢ €R.

Atranslation (1.13) maps the solution curve corresponding to a particular value
of ¢; to the curve

J=y=ce =" = 6", where ¢, = cie7®.

Therefore translations in the direction are nontrivial symmetries of (1.12),
because (generallgy =# c;. (Of courseg = 0 necessarily gives a trivial sym-
metry.) Interestingly, one solution curimapped to itself by every translation,
namelyy = 0. Curves that are mapped to themselves by a symmetry are said
to beinvariant under the symmetry. The solutigh= 0 partitions the set of
solution curvesy = ¢;€%, as shown in Fig. 1.4. The translational symmetries
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y

a4

Fig. 1.4. Solutions of/ = y.

(1.13) are unable to map solutions with> 0 to solutions withc; < 0. How-
ever, the ODE does have symmetries that exchange the solutions in the upper
and lower half-planes. One such symmetry is

X, 9 = (X, =y);
this is a discrete symmetry.
So far, we have looked at symmetries of very simple ODEs, but one strength
of symmetry methods is that they are applicable to almost any ODE. Here are
some more complicated examples.

Example 1.2 The Riccati equation

dy y+1 y?
- _ Z 1.14
dx X + x3 ( )

seems complicated, but its general solution is quite simple (as we shall see in
the next chapter). The symmetries of this ODE include a one-parameter Lie
group of inversions,

1—ex’ 1—ex

(K%z( X y ). (1.15)
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2

Fig. 1.5. Solutions of (1.16).

To prove this, simply substitute (1.15) into the symmetry condition (1.11), with
o defined by the right-hand side of (1.14). The inversions are our first example
of a Lie group of symmetries that is not well defined for all realThe radius

of convergence of the Taylor series abeut 0 is 1/|X|.)

Example 1.3 Consider the ODE
dy  y*4+x?y—y—x
dx  xy24+x34+y—x’

(1.16)

The set of solution curves is sketched in Fig. 1.5, which suggests that rota-
tions about the origin are symmetries. It is left to the reader to check that the
rotations

(X, §) = (xcose — ysing, Xsing + y cose) (2.17)

form a one-parameter Lie group of symmetries of (1.16).

1.4 Lie Symmetries Solve First-Order ODEs

The title of this section comes from the following rather surprising result. Sup-
pose that we are able to find a nontrivial one-parameter Lie group of symmetries
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of a first-order ODE, (1.9). Then the Lie group can be used to determine the
general solution of the ODE. This result is an indication of the usefulness of
Lie symmetries; it is entirely independent of the functio(x, y). The main
ideas leading to the result are outlined below, and a more detailed discussion
follows in the next chapter.

First, suppose that the symmetries of (1.9) include the Lie group of transla-
tions in they direction,

X9 =Xy+e. (1.18)
Then the symmetry condition (1.11) reduces to
o(X, YY) =X Y+e), (1.19)

for all ¢ in some neighbourhood of zero. Differentiating (1.19) with respect to
¢ ate = 0 leads to the result

wy(X,y) =0.

Therefore the most general ODE whose symmetries include the Lie group of
translations (1.18) is of the form

& = (l)(X)

This ODE can be solved immediately: the general solution is

y= /w(x)dx+c. (1.20)

(We shall regard a differential equation as being solved if all that remains is
to carry outquadrature i.e., to evaluate an integral.) The particular solution
corresponding ta = 0 is mapped by the translation to the solution

g’:/w(x)dx—i-s:/w(f()df(—}—e,

which is the solution corresponding to= ¢. So by using the one-parameter
Lie group, we obtain the general solution from one particular solution. The Lie
group acts on the set of solution curves by changing the constant of integration.

Clearly, every first-order ODE with the Lie group of translations (1.18) is
easily solved. Is the same true for ODEs with other one-parameter Lie groups?
Consider the rotationally symmetric ODE (1.16), depicted in Fig. 1.5. It is
natural to rewrite the ODE in terms of polar coordinate®), where

X =T cosh, y =r siné.
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We obtain a far simpler ODE,

dr

— =r(l-r? 1.21

g5 =ra=r. (121)
which is immediately integrable. The one-parameter Lie group of rotations

(1.17), rewritten in polar coordinates, becomes
(F, 0) =, 6+e).

In the new coordinates, the rotational symmetries become translatiénsaon
the ODE is easily solved.

The same idea works for all one-parameter Lie groups. In a suitable coor-
dinate system, the symmetries parametrized buyfficiently close to zero are
equivalent to translations (except at fixed points). One problem remains: what
is the “suitable” coordinate system? For instance, the appropriate coordinate
system for the ODE (1.14) is not obvious. It turns out that the Lie group itself
holds the solution to this problem, as we shall see in the next chapter.

Exercises
1.1 Sketch the set of solutions of the ODE

dy vy

dx X’
How many different kinds of symmetries can you identify?
1.2 Show that the transformation defined by

X, 9 =(€x,y)
is a symmetry of

dy _1-y
dx ~  x

for all ¢ € R. Describe these symmetries geometrically; how do they
transform the solutions of the ODE?

1.3 Verify that the rotations (1.17) are symmetries of the ODE (1.16).

1.4 Determine the value of for which

(X, 9) = (X + 2¢, y&r)
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is a symmetry of
dy 2 ~—X X
— = y“e e
dx y +y+
forall e € R.
Show that, for every € R,

X, 9 = (x,y+e exp{/ F(x)dx})

is a symmetry of the general first-order linear ODE

dy
— =F(X G(X).
ax Xy + G(Xx)
Explain the connection between these symmetries and the linear superpo-

sition principle.



