Fundamentals of Noise and Vibration Analysis for Engineers

Noise and vibration affects all kinds of engineering structures, and is fast becoming an integral part of engineering courses at universities and colleges around the world. In this second edition, Michael Norton’s classic text has been extensively updated to take into account recent developments in the field. Much of the new material has been provided by Denis Karczub, who joins Michael as second author for this edition.

This book treats both noise and vibration in a single volume, with particular emphasis on wave-mode duality and interactions between sound waves and solid structures. There are numerous case studies, test cases and examples for students to work through. The book is primarily intended as a text book for senior level undergraduate and graduate courses, but is also a valuable reference for practitioners and researchers in the field of noise and vibration.
Fundamentals of Noise and Vibration Analysis for Engineers

Second edition

M. P. Norton
School of Mechanical Engineering, University of Western Australia

and

D. G. Karczub
S.V.T. Engineering Consultants, Perth, Western Australia
To
our parents,
the first author’s wife Erica,
and his young daughters Caitlin and Sarah
Contents

Preface
page xv

Acknowledgements
xvii

Introductory comments
xviii

1 Mechanical vibrations: a review of some fundamentals
1

1.1 Introduction
1

1.2 Introductory wave motion concepts – an elastic continuum viewpoint
3

1.3 Introductory multiple, discrete, mass–spring–damper oscillator concepts – a macroscopic viewpoint
8

1.4 Introductory concepts on natural frequencies, modes of vibration, forced vibrations and resonance
10

1.5 The dynamics of a single oscillator – a convenient model
12

1.5.1 Undamped free vibrations
12

1.5.2 Energy concepts
15

1.5.3 Free vibrations with viscous damping
16

1.5.4 Forced vibrations: some general comments
21

1.5.5 Forced vibrations with harmonic excitation
22

1.5.6 Equivalent viscous-damping concepts – damping in real systems
30

1.5.7 Forced vibrations with periodic excitation
32

1.5.8 Forced vibrations with transient excitation
33

1.6 Forced vibrations with random excitation
37

1.6.1 Probability functions
38

1.6.2 Correlation functions
39

1.6.3 Spectral density functions
41

1.6.4 Input–output relationships for linear systems
42

1.6.5 The special case of broadband excitation of a single oscillator
50

1.6.6 A note on frequency response functions and transfer functions
52

1.7 Energy and power flow relationships
52
1.8 Multiple oscillators – a review of some general procedures 56
 1.8.1 A simple two-degree-of-freedom system 56
 1.8.2 A simple three-degree-of-freedom system 59
 1.8.3 Forced vibrations of multiple oscillators 60

1.9 Continuous systems – a review of wave-types in strings, bars and plates 64
 1.9.1 The vibrating string 64
 1.9.2 Quasi-longitudinal vibrations of rods and bars 72
 1.9.3 Transmission and reflection of quasi-longitudinal waves 77
 1.9.4 Transverse bending vibrations of beams 79
 1.9.5 A general discussion on wave-types in structures 84
 1.9.6 Mode summation procedures 85
 1.9.7 The response of continuous systems to random loads 91
 1.9.8 Bending waves in plates 94

1.10 Relationships for the analysis of dynamic stress in beams 96
 1.10.1 Dynamic stress response for flexural vibration of a thin beam 96
 1.10.2 Far-field relationships between dynamic stress and structural
 vibration levels 100
 1.10.3 Generalised relationships for the prediction of maximum
 dynamic stress 102
 1.10.4 Properties of the non-dimensional correlation ratio 103
 1.10.5 Estimates of dynamic stress based on static stress and
 displacement 104
 1.10.6 Mean-square estimates for single-mode vibration 105
 1.10.7 Relationships for a base-excited cantilever with tip mass 106

1.11 Relationships for the analysis of dynamic strain in plates 108
 1.11.1 Dynamic strain response for flexural vibration of a constrained
 rectangular plate 109
 1.11.2 Far-field relationships between dynamic stress and structural
 vibration levels 112
 1.11.3 Generalised relationships for the prediction of maximum
 dynamic stress 113

1.12 Relationships for the analysis of dynamic strain in cylindrical shells 113
 1.12.1 Dynamic response of cylindrical shells 114
 1.12.2 Propagating and evanescent wave components 117
 1.12.3 Dynamic strain concentration factors 119
 1.12.4 Correlations between dynamic strain and velocity spatial
 maxima 119

References 122

Nomenclature 123
2 Sound waves: a review of some fundamentals

2.1 Introduction 128
2.2 The homogeneous acoustic wave equation – a classical analysis 131
 2.2.1 Conservation of mass 134
 2.2.2 Conservation of momentum 136
 2.2.3 The thermodynamic equation of state 139
 2.2.4 The linearised acoustic wave equation 140
 2.2.5 The acoustic velocity potential 141
 2.2.6 The propagation of plane sound waves 143
 2.2.7 Sound intensity, energy density and sound power 144
2.3 Fundamental acoustic source models 146
 2.3.1 Monopoles – simple spherical sound waves 147
 2.3.2 Dipoles 151
 2.3.3 Monopoles near a rigid, reflecting, ground plane 155
 2.3.4 Sound radiation from a vibrating piston mounted in a rigid baffle 157
 2.3.5 Quadrupoles – lateral and longitudinal 162
 2.3.6 Cylindrical line sound sources 164
2.4 The inhomogeneous acoustic wave equation – aerodynamic sound 165
 2.4.1 The inhomogeneous wave equation 167
 2.4.2 Lighthill’s acoustic analogy 174
 2.4.3 The effects of the presence of solid bodies in the flow 177
 2.4.4 The Powell–Howe theory of vortex sound 180
2.5 Flow duct acoustics 183
 References 187
 Nomenclature 188

3 Interactions between sound waves and solid structures 193

3.1 Introduction 193
3.2 Fundamentals of fluid–structure interactions 194
3.3 Sound radiation from an infinite plate – wave/boundary matching concepts 197
3.4 Introductory radiation ratio concepts 203
3.5 Sound radiation from free bending waves in finite plate-type structures 207
3.6 Sound radiation from regions in proximity to discontinuities – point and line force excitations 216
Contents

3.7 Radiation ratios of finite structural elements 221
3.8 Some specific engineering-type applications of the reciprocity principle 227
3.9 Sound transmission through panels and partitions 230
 3.9.1 Sound transmission through single panels 232
 3.9.2 Sound transmission through double-leaf panels 241
3.10 The effects of fluid loading on vibrating structures 244
3.11 Impact noise 247

References
249

Nomenclature
250

4 Noise and vibration measurement and control procedures 254

4.1 Introduction 254
4.2 Noise and vibration measurement units – levels, decibels and spectra 256
 4.2.1 Objective noise measurement scales 256
 4.2.2 Subjective noise measurement scales 257
 4.2.3 Vibration measurement scales 259
 4.2.4 Addition and subtraction of decibels 261
 4.2.5 Frequency analysis bandwidths 263
4.3 Noise and vibration measurement instrumentation 267
 4.3.1 Noise measurement instrumentation 267
 4.3.2 Vibration measurement instrumentation 270
4.4 Relationships for the measurement of free-field sound propagation 273
4.5 The directional characteristics of sound sources 278
4.6 Sound power models – constant power and constant volume sources 279
4.7 The measurement of sound power 282
 4.7.1 Free-field techniques 282
 4.7.2 Reverberant-field techniques 283
 4.7.3 Semi-reverberant-field techniques 287
 4.7.4 Sound intensity techniques 290
4.8 Some general comments on industrial noise and vibration control 294
 4.8.1 Basic sources of industrial noise and vibration 294
 4.8.2 Basic industrial noise and vibration control methods 295
 4.8.3 The economic factor 299
4.9 Sound transmission from one room to another 301
4.10 Acoustic enclosures 304
4.11 Acoustic barriers 308
4.12 Sound-absorbing materials 313
4.13 Vibration control procedures 320
Contents

4.13.1 Low frequency vibration isolation – single-degree-of-freedom systems 322
4.13.2 Low frequency vibration isolation – multiple-degree-of-freedom systems 325
4.13.3 Vibration isolation in the audio-frequency range 327
4.13.4 Vibration isolation materials 330
4.13.5 Dynamic absorption 332
4.13.6 Damping materials 334
References 335
Nomenclature 336

5 The analysis of noise and vibration signals 342

5.1 Introduction 342
5.2 Deterministic and random signals 344
5.3 Fundamental signal analysis techniques 347
 5.3.1 Signal magnitude analysis 347
 5.3.2 Time domain analysis 351
 5.3.3 Frequency domain analysis 352
 5.3.4 Dual signal analysis 355
5.4 Analogue signal analysis 365
5.5 Digital signal analysis 366
5.6 Statistical errors associated with signal analysis 370
 5.6.1 Random and bias errors 370
 5.6.2 Aliasing 372
 5.6.3 Windowing 374
5.7 Measurement noise errors associated with signal analysis 377
References 380
Nomenclature 380

6 Statistical energy analysis of noise and vibration 383

6.1 Introduction 383
6.2 The basic concepts of statistical energy analysis 384
6.3 Energy flow relationships 387
 6.3.1 Basic energy flow concepts 388
 6.3.2 Some general comments 389
 6.3.3 The two subsystem model 391
Contents

6.3.4 In-situ estimation procedures 393
6.3.5 Multiple subsystems 395
6.4 Modal densities 397
 6.4.1 Modal densities of structural elements 397
 6.4.2 Modal densities of acoustic volumes 400
 6.4.3 Modal density measurement techniques 401
6.5 Internal loss factors 407
 6.5.1 Loss factors of structural elements 408
 6.5.2 Acoustic radiation loss factors 410
 6.5.3 Internal loss factor measurement techniques 412
6.6 Coupling loss factors 417
 6.6.1 Structure–structure coupling loss factors 417
 6.6.2 Structure–acoustic volume coupling loss factors 419
 6.6.3 Acoustic volume–acoustic volume coupling loss factors 420
 6.6.4 Coupling loss factor measurement techniques 421
6.7 Examples of the application of S.E.A. to coupled systems 423
 6.7.1 A beam–plate–room volume coupled system 424
 6.7.2 Two rooms coupled by a partition 427
6.8 Non-conservative coupling – coupling damping 430
6.9 The estimation of sound radiation from coupled structures using total loss factor concepts 431
6.10 Relationships between dynamic stress and strain and structural vibration levels 433

References 435
Nomenclature 437

7 Pipe flow noise and vibration: a case study 441

7.1 Introduction 441
7.2 General description of the effects of flow disturbances on pipeline noise and vibration 443
7.3 The sound field inside a cylindrical shell 446
7.4 Response of a cylindrical shell to internal flow 451
 7.4.1 General formalism of the vibrational response and sound radiation 451
 7.4.2 Natural frequencies of cylindrical shells 454
 7.4.3 The internal wall pressure field 455
 7.4.4 The joint acceptance function 458
 7.4.5 Radiation ratios 460
Contents

7.5 Coincidence – vibrational response and sound radiation due to higher
order acoustic modes 461
7.6 Other pipe flow noise sources 467
7.7 Prediction of vibrational response and sound radiation characteristics 471
7.8 Some general design guidelines 477
7.9 A vibration damper for the reduction of pipe flow noise and vibration 479

References 481
Nomenclature 483

8 Noise and vibration as a diagnostic tool 488

8.1 Introduction 488
8.2 Some general comments on noise and vibration as a diagnostic tool 489
8.3 Review of available signal analysis techniques 493
 8.3.1 Conventional magnitude and time domain analysis techniques 494
 8.3.2 Conventional frequency domain analysis techniques 501
 8.3.3 Cepstrum analysis techniques 503
 8.3.4 Sound intensity analysis techniques 504
 8.3.5 Other advanced signal analysis techniques 507
 8.3.6 New techniques in condition monitoring 511
8.4 Source identification and fault detection from noise and vibration
signals 513
 8.4.1 Gears 514
 8.4.2 Rotors and shafts 516
 8.4.3 Bearings 518
 8.4.4 Fans and blowers 523
 8.4.5 Furnaces and burners 525
 8.4.6 Punch presses 527
 8.4.7 Pumps 528
 8.4.8 Electrical equipment 530
 8.4.9 Source ranking in complex machinery 532
 8.4.10 Structural components 536
 8.4.11 Vibration severity guides 539
8.5 Some specific test cases 541
 8.5.1 Cabin noise source identification on a load–haul–dump vehicle 541
 8.5.2 Noise and vibration source identification on a large induction
 motor 547
 8.5.3 Identification of rolling-contact bearing damage 550
 8.5.4 Flow-induced noise and vibration associated with a gas pipeline 554
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.5 Flow-induced noise and vibration associated with a racing sloop (yacht)</td>
<td>557</td>
</tr>
<tr>
<td>8.6 Performance monitoring</td>
<td>557</td>
</tr>
<tr>
<td>8.7 Integrated condition monitoring design concepts</td>
<td>559</td>
</tr>
<tr>
<td>References</td>
<td>562</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>563</td>
</tr>
</tbody>
</table>

Problems

566

Appendix 1: Relevant engineering noise and vibration control journals 599

Appendix 2: Typical sound transmission loss values and sound absorption coefficients for some common building materials 600

Appendix 3: Units and conversion factors 603

Appendix 4: Physical properties of some common substances 605

Answers to problems

607

Index

621
The study of noise and vibration and the interactions between the two is now fast becoming an integral part of mechanical engineering courses at various universities and institutes of technology around the world. There are many undergraduate text books available on the subject of mechanical vibrations and there are also a relatively large number of books available on applied noise control. There are also several text books available on fundamental acoustics and its physical principles. The books on mechanical vibrations are inevitably only concerned with the details of vibration theory and do not cover the relationships between noise and vibration. The books on applied noise control are primarily designed for the practitioner and not for the engineering student. The books on fundamental acoustics generally concentrate on physical acoustics rather than on engineering noise and vibration and are therefore not particularly well suited to the needs of engineers. There are also several excellent specialist texts available on structural vibrations, noise radiation and the interactions between the two. These texts do not, however, cover the overall area of engineering noise and vibration, and are generally aimed at the postgraduate research student or the practitioner. There are also a few specialist reference handbooks available on shock and vibration and noise control – these books are also aimed at the practitioner rather than the engineering student.

The main purpose of this second edition is to attempt to provide the engineering student with an updated unified approach to the fundamentals of engineering noise and vibration analysis and control. Thus, the main feature of the book is the bringing of noise and vibration together within a single volume instead of treating each topic in isolation. Also, particular emphasis is placed on the interactions between sound waves and solid structures, this being an important aspect of engineering noise and vibration. The book is primarily designed for undergraduate students who are in the latter stages of their engineering course. It is also well suited to the postgraduate student who is in the initial stages of a research project on engineering noise and vibration and to the practitioner, both of whom might wish to obtain an overview and/or a revision of the fundamentals of the subject.

This book is divided into eight chapters. Each of these chapters is summarised in the introductory comments. Because of the wide scope of the contents, each chapter has
its own nomenclature list and its own detailed reference list. A selection of problems relating to each chapter is also provided at the end of the book together with solutions. Each of the chapters has evolved from lecture material presented by the first author to (i) undergraduate mechanical engineering students at the University of Western Australia, (ii) postgraduate mechanical engineering students at the University of Western Australia, and (iii) practising engineers in industry in the form of short specialist courses. The complete text can be presented in approximately seventy-two lectures, each of about forty-five minutes duration. Suggestions for subdividing the text into different units are presented in the introductory comments.

The authors hope that this book will be of some use to those who choose to purchase it, and will be pleased and grateful to hear from readers who identify some of the errors and/or misprints that will undoubtedly be present in the text. Suggestions for modifications and/or additions to the text will also be gratefully received.

M. P. Norton and D. G. Karczub
Acknowledgements

This book would not have eventuated had it not been for several people who have played an important role at various stages in our careers to date. Whilst these people have, in the main, not had any direct input into the preparation of this book, their contributions to the formulation of our thoughts and ideas over the years have been invaluable to say the least.

Acknowledgements are due to several of our colleagues and the first author’s postgraduate students at the University of Western Australia. These include Graham Forrester, Paul Keswick, Melinda Hodkiewicz, Pan Jie, Simon Drew and Gert Hofacker.

Last, but not least, special acknowledgements are due to our families: our parents for encouraging us to pursue an academic career; and the first author’s wife Erica, for enduring the very long hours that we had to work during the gestation period of this second edition, and his young daughters, Caitlin and Sarah.
Introductory comments

A significant amount of applied technology pertaining to noise and vibration analysis and control has emerged over the last thirty years or so. It would be an impossible task to attempt to cover all this material in a textbook aimed at providing the reader with a fundamental basis for noise and vibration analysis. This book is therefore only concerned with some of the more important fundamental considerations required for a systematic approach to engineering noise and vibration analysis and control, the main emphasis being the industrial environment. Thus, this book is specifically concerned with the fundamentals of noise and vibration analysis for mechanical engineers, structural engineers, mining engineers, production engineers, maintenance engineers, etc. It embodies eight self-contained chapters, each of which is summarised here.

The first chapter, on mechanical vibrations, is a review of some fundamentals. This part of the book assumes no previous knowledge of vibration theory. A large part of what is presented in this chapter is covered very well in existing text books. The main difference is the emphasis on the wave–mode duality, and the reader is encouraged to think in terms of both waves and modes of vibration. As such, the introductory comments relate to both lumped parameter models and continuous system models. The sections on the dynamics of a single oscillator, forced vibrations with random excitation and multiple oscillator are presented using the traditional ‘mechanical vibrations’ approach. The section on continuous systems utilises both the traditional ‘mechanical vibrations’ approach and the wave impedance approach. It is in this section that the wave–mode duality first becomes apparent. The wave impedance approach is particularly useful for identifying energy flow characteristics in structural components and for estimating energy transmission and reflection at boundaries. A unique treatment of dynamic stress and strain has been included due to the importance of considering dynamic stress in a vibrating structure given the risk of fatigue failure. The treatment provided uses travelling wave concepts to provide a consistent theoretical framework for analysis of dynamic stress in beams, plates and cylindrical shells. The contents of chapter 1 are best suited to a second year or a third year course unit (based on a total course length of four years) on mechanical vibrations.

The second chapter, on sound waves, is a review of some fundamentals of physical acoustics. Like the first chapter, this chapter assumes no previous working knowledge
of acoustics. Sections are included on a classical analysis of the homogeneous wave equation, fundamental sound source models and the inhomogeneous wave equation associated with aerodynamic sound, with particular attention being given to Lighthill’s acoustic analogy and the Powell–Howe theory of vortex sound. The distinction between the homogeneous and the inhomogeneous acoustic wave equations is continually emphasised. The chapter also includes a discussion on how reflecting surfaces can affect the sound power characteristics of sound sources (this important practical point is often overlooked), and the use of one-dimensional acoustics to analyse sound transmission through a duct with mean flow (with applications including muffler/exhaust system design, air conditioning ducts, and pulsation control for reciprocating compressor installations) based on the use of acoustic impedance and travelling wave concepts developed earlier in the chapter. The contents of chapter 2 are best suited to a third year or a fourth year course unit on fundamental acoustics.

The third chapter complements chapters 1 and 2, and is about the interactions between sound waves and solid structures. It is very important for engineers to come to grips with this chapter, and it is the most important fundamental chapter in the book. Wave–mode duality concepts are utilised regularly in this chapter. The chapter includes discussions on the fundamentals of fluid–structure interactions, radiation ratio concepts, sound transmission through panels, the effects of fluid loading, and impact noise processes. The contents of chapter 3 are best suited to a third year or a fourth year course unit. The optimum procedure would be to combine chapters 2 and 3 into a single course unit.

The fourth chapter is a fairly basic chapter on noise and vibration measurements and control procedures. A large part of the contents of chapter 4 is readily available in the noise and vibration control handbook literature with three exceptions: firstly, constant power, constant volume and constant pressure sound source concepts are discussed in relation to the effects of rigid, reflecting boundaries on the sound power characteristics of these sound sources; secondly, the economic issues in noise and vibration control are discussed; and, thirdly, sound intensity techniques for sound power measurement and noise source identification are introduced. The contents of chapter 4 are best suited to a fourth year course unit on engineering noise and vibration control. By the very nature of the wide range of noise and vibration control procedures, several topics have had to be omitted from the chapter. Some of these topics include outdoor sound propagation, community noise, air conditioning noise, psychological effects, etc.

The fifth chapter is about the analysis of noise and vibration signals. It includes discussions on deterministic and random signals, signal analysis techniques, analogue and digital signal analysis procedures, random and bias errors, aliasing, windowing, and measurement noise errors. The contents of chapter 5 are best suited to a fourth year unit on engineering noise and vibration noise control, and are best combined with chapters 4 and 8 for the purposes of a course unit.

The sixth and seventh chapters involve specialist topics which are more suited to postgraduate courses. Chapter 6 is about the usage of statistical energy analysis
procedures for noise and vibration analysis. This includes energy flow relationships, modal densities, internal loss factors, coupling loss factors, non-conservative coupling, the estimation of sound radiation from coupled structures, and relationships between dynamic stress and strain and structural vibration levels. Chapter 7 is about flow-induced noise and vibrations in pipelines. This includes the sound field inside a cylindrical shell, the response of a cylindrical shell to internal flow, coincidence, and other pipe flow noise sources. These two chapters can be included either as optional course units in the final year of an undergraduate course, or as additional reading material for the course unit based on chapters 4, 5 and 8.

The eighth chapter is a largely qualitative description of noise and vibration as a diagnostic tool (i.e. source identification and fault detection). Magnitude and time domain signal analysis techniques, frequency domain signal analysis techniques, cepstrum analysis techniques, sound intensity analysis techniques, and other advanced signal analysis techniques are described here. The chapter also includes five specific practical test cases; discussions on new techniques used in condition monitoring such as expert systems and performance monitoring; and a review of design concepts for a plant-wide condition monitoring system integrating performance monitoring, safety monitoring, and on-line and off-line condition monitoring. The contents of chapter 8 are best suited to a fourth year unit on engineering noise and vibration noise control, and are best combined with chapters 4 and 5 for the purposes of a course unit.

Based upon the preceding comments, the following subdivision of the text is recommended for the purposes of constructing course units.

(1) 2nd year unit mechanical vibration (~14 hrs)
 chapter 1 (sections 1.1–1.8)

(2) 3rd year unit waves in structures and fluids (~14 hrs)
 chapter 1 (section 1.9), chapter 2 (sections 2.1, 2.2)

(3) 3rd or 4th year unit structure–sound interactions (~18 hrs)
 chapter 2 (sections 2.3, 2.4), chapter 3

(4) 4th year unit*

 engineering noise control (~18 hrs)
 chapters 4, 5, 8

(5) optional specialist units statistical energy analysis and pipe flow noise
 and/or additional reading (~8 hrs) chapters 6, 7.

* Chapters 2 and 3 should be a prerequisite for the engineering noise control unit.