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Introduction

In this introductory chapter we focus on the interaction of optical fields with matter
because it forms the basis of signal amplification in all optical amplifiers. Accord-
ing to our present understanding, optical fields are made of photons with properties
precisely described by the laws of quantum field theory [1]. One consequence of
this wave–particle duality is that optical fields can be described, in certain cases, as
electromagnetic waves using Maxwell’s equations and, in other cases, as a stream
of massless particles (photons) such that each photon contains an energy hν, where
h is the Planck constant and ν is the frequency of the optical field. In the case
of monochromatic light, it is easy to relate the number of photons contained in
an electromagnetic field to its associated energy density. However, this becomes
difficult for optical fields that have broad spectral features, unless full statistical
features of the signal are known [2]. Fortunately, in most cases that we deal with,
such a detailed knowledge of photon statistics is not necessary or even required
[3, 4]. Both the linear and the nonlinear optical studies carried out during the last
century have shown us convincingly that a theoretical understanding of experimen-
tal observations can be gained just by using wave features of the optical fields if
they are intense enough to contain more than a few photons [5]. It is this semiclas-
sical approach that we adopt in this book. In cases where such a description is not
adequate, one could supplement the wave picture with a quantum description.

In Section 1.1 we introduce Maxwell’s equations and the Fourier-transform rela-
tions in the temporal and spatial domains used to simplify them. This section also
establishes the notation used throughout this book. In Section 1.2 we look at widely
used dielectric functions describing dispersive optical response of materials. After
discussing dispersion relations in Section 1.3, we show in Section 1.4 that they can-
not have an arbitrary form because of the constrained imposed by the causality and
enforced by the Kramers–Kronig relations. Section 1.5 considers the propagation
of plane waves in a dispersive medium because plane waves play a central role in
analyzing various amplification schemes.
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2 Introduction

1.1 Maxwell’s equations

In this section we begin with the time-domain Maxwell’s equations and introduce
their frequency-domain and momentum-domain forms using the Fourier trans-
forms. These forms are then used to classify different optical materials through
the constitutive relations.

1.1.1 Maxwell’s equations in the time domain

In a semiclassical approach, Maxwell’s equations provide the fundamental basis
for the propagation of optical fields through any optical medium [6, 7]. These four
equations can be written in an integral form. Two of them relate the electric field
vector E and electric flux-density vector D with the magnetic field vector H and
the magnetic flux-density vector B using the line and surface integrals calculated
over a closed contour l surrounding a surface Sl shown in Figure 1.1:

Faraday’s law of induction:

∮
l

E(r, t) · dl = − d

dt

∫
Sl

B(r, t) · dS, (1.1a)

Ampere’s circuital law:

∮
l

H (r, t) · dl = d

dt

∫
Sl

D(r, t) · dS + I (t), (1.1b)

where I (t) is the total current flowing across the surface Sl . The pairs E, D and
H , B are not independent even in vacuum and are related to each other by

dS

direction of traversal

contour l

surface normal

dl

Figure 1.1 Closed contour used for calculating the line and surface integrals
appearing in Maxwell’s equations.
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1.1 Maxwell’s equations 3

dV

dS

Volume V

Closed Surface SV

Surface Normal

Figure 1.2 Fixed volume used for calculating the surface and volume integrals
appearing in Maxwell’s equations.

D = ε0E, (1.2a)

B = µ0H , (1.2b)

where µ0 is the permeability and ε0 is the permittivity in free space.
The other two of Maxwell’s equations relate the electric field vector E with

the magnetic flux-density vector B using surface integrals calculated over a fixed
volume V, bounded by a closed surface SV as shown in Figure 1.2. Their explicit
form is

Gauss’s law:

∮
SV

D(r, t) · dS = q(t), (1.3a)

Gauss’s law for magnetism:

∮
SV

B(r, t) · dS = 0, (1.3b)

where q(t) is the total electric charge contained in the volume V .
In a continuous optical medium, the four integral equations can be recast in an

equivalent differential form useful for theoretical analysis and numerical com-
putations [6, 7]. Application of the Stokes theorem1 to Eqs. (1.1) provides us
with

1 A continuous vector field F defined on a surface S with a boundary l satisfies
∮
l F · dl = ∫

S ∇ × F · dS.
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4 Introduction

Curl equation for electric field: ∇ × E(r, t) = −∂B(r, t)

∂t
, (1.4a)

Curl equation for magnetic field: ∇ × H (r, t) = ∂D(r, t)

∂t
+ J (r, t), (1.4b)

where J (r, t) is the electric current density. Similarly, application of the divergence
theorem2 to Eqs. (1.3) provides us with

Divergence equation for electric field: ∇ · D(r, t) = ρ(r, t), (1.5a)

Divergence equation for magnetic field: ∇ · B(r, t) = 0, (1.5b)

where ρ(r, t) is the local charge density.
The current density J (r, t) and the charge density ρ(r, t) are related to each

other through Maxwell’s equations. This relationship can be established by taking
the divergence of Eq. (1.4b) and noting the operator identity ∇ · (∇ × F ) ≡ 0 for
any vector field F . The result is

∇ · J (r, t) + ∂ρ(r, t)

∂t
= 0. (1.6)

This equation is called the charge-continuity equation because it shows that the
charge moving out of a differential volume is equal to the rate at which the charge
density decreases within that volume. In other words, the continuity equation rep-
resents mathematically the principle of charge conservation at each point of space
where the electromagnetic field is continuous.

1.1.2 Maxwell’s equations in the frequency domain

The differential form of Maxwell’s equations can be put into an equivalent format
by mapping time variables to the frequency domain [8]. This is done by introducing
the Fourier-transform operator Ft+ {} (ω) as

Ỹ (. . . , ω, . . .) � Ft+ {Y (. . . , t, . . .)} (ω)

=
∫ ∞

−∞
Y (. . . , t, . . .) exp(+jωt)dt,

(1.7)

where j = √
(−1) and ω is the associated frequency-domain variable correspond-

ing to time t; ω can assume any value on the real axis (i.e., −∞ < ω < +∞). Even
though all quantities in the physical world correspond to real variables, their Fourier

2 A vector field F defined on a volume V with a boundary surface S satisfies
∮
V ∇ · FdV = ∫

S F · dS.
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1.1 Maxwell’s equations 5

transforms can result in complex numbers. Nonetheless, for physical and mathe-
matical reasons, the Fourier representation can provide a much simpler description
of an underlying problem in certain cases.

We consistently use the notation that a tilde over a time-domain variable Y

represents its Fourier transform when the Fourier integral is done with the plus sign
in the exponential exp(+jωt). The Fourier operator shows this sign convention
by displaying a plus sign just after its integration variable t . It is important to note
that by adopting this notation, we also explicitly indicate that the Fourier transform
takes the real variable t to its Fourier-space variable ω.

A very useful feature of the Fourier transform is that a function can be readily
inverted back to its original temporal form using the inverse Fourier-transform
operator F−1

ω+ {} (t), defined as

Y (. . . , t, . . .) � F−1
ω+

{
Ỹ (. . . , ω, . . .)

}
(t)

= 1

(2π)dim(ω)

∫ ∞

−∞
Ỹ (. . . , ω, . . .) exp(−jωt)dω,

(1.8)

where dim(ω) is the dimension of the variable ω. Because t → ω is a one-
dimensional mapping, we have dim(ω) = 1 in this instance, but it can assume
other positive integer values. For example, the dimension of the Fourier mapping
is 3 when we later use spatial Fourier transforms.

To convert Maxwell’s equations to the Fourier-transform domain, we need to
map the partial differentials in Maxwell’s equations to the frequency domain. This
can be done by differentiating Eq. (1.8) with respect to t to get

∂Y (. . . , t, . . .)

∂t
= 1

2π

∫ ∞

−∞
−jωỸ (. . . , ω, . . .) exp(−jωt)dω. (1.9)

This equation shows that we can establish the operator identity

∂Y (. . . , t, . . .)

∂t
≡ F−1

ω+
{−jωỸ (. . . , ω, . . .)

}
(t), (1.10)

resulting in the mapping ∂
∂t

→ −jω from time to frequency domain.
We apply the operator relation (1.10) to the time-domain Maxwell’s equations in

Eqs. (1.4) and (1.5) to obtain the following frequency-domain Maxwell’s equations:

∇ × Ẽ(r, ω) = jωB̃(r, ω),

∇ · D̃(r, ω) = ρ̃(r, ω),

∇ × H̃ (r, ω) = −jωD̃(r, ω) + J̃ (r, ω),

∇ · B̃(r, ω) = 0.

(1.11)
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6 Introduction

1.1.3 Maxwell’s equations in the momentum domain

Further simplification of Maxwell’s equations is possible by mapping the spa-
tial variable r to its equivalent Fourier-domain variable k (also called the
momentum domain or the k space). For physical reasons discussed later,
the Fourier transform in the spatial domain is defined with a minus sign in the
exponential, i.e.,

Ŷ (. . . , k, . . .) � Fr− {Y (. . . , r, . . .)} (k)

=
∫ ∞

−∞
Y (. . . , r, . . .) exp(−jk · r)dr.

(1.12)

The Fourier operator shows this sign convention clearly by displaying a minus sign
just after its integration variable r . The hat symbol over a field variable Y represents
its spatial-domain Fourier transform.

We should point out that a second choice exists for the signs used in the temporal
(t → ω) and spatial (r → k) Fourier transforms. The sign convention that we have
adopted is often used in physics textbooks. Using Maxwell’s equations with this
sign convention, one can show that a plane wave of the form exp(jk · r − jωt)

moves radially outward from a point source for positive values of r and t [9]. The
opposite sign convention, where the temporal variable in Eq. (1.7) carries a negative
sign, is widely used in electrical engineering literature.

Similarly to the time-domain Fourier transform, a spatial-domain Fourier
transform can be inverted with the following formula:

Y (. . . , r, . . .) � F−1
k−

{
Ŷ (. . . , k, . . .)

}
(r)

= 1

(2π)dim(k)

∫ ∞

−∞
Ŷ (. . . , k, . . .) exp(+jk · r)dk,

(1.13)

where dim(k) = 3 because the mapping is done in three-dimensional space. Using
a relation similar to that appearing in Eq. (1.10), we can establish the mapping
∇ → jk from the spatial domain to the k space [10]. Applying this mapping to
the differential form of Maxwell’s equations (1.4) and (1.5) leads to the k-space
version of Maxwell’s equations:

jk × Ê(k, t) = −∂B̂(k, t)

∂t
,

jk × Ĥ (k, t) = ∂D̂(k, t)

∂t
+ Ĵ (k, t),

jk · D̂(k, t) = ρ̂(k, t),

jk · B̂(k, t) = 0.
(1.14)

Further simplification occurs if we combine the temporal and spatial mappings
to form a ω ⊗ k representation of Maxwell’s equations. To achieve this, we define
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1.1 Maxwell’s equations 7

a function that takes us from t ⊗ r space to ω ⊗ k space (with a hat over the
tilde):

̂̃Y (. . . , k, . . . , ω, . . .) � Fr+,t− {Y (. . . , r, . . . , t, . . .)} (k, ω)

=
∫ ∞

−∞
Y (. . . , r, . . . , t, . . .) exp(jk · r − jωt) dr dt.

(1.15)

Application of this Fourier transform to Maxwell’s equations in Eqs. (1.4) and (1.5)
gives us their following simple algebraic form:

k × ̂̃E(k, ω) = ω
̂̃B(k, ω),

jk × ̂̃H (k, ω) = −jω
̂̃D(k, ω) +̂̃

J (k, ω),

k · ̂̃D(k, ω) = ̂̃ρ(k, ω),

k · ̂̃B(k, ω) = 0.

(1.16)

These vectorial relationships show that, in a linear isotropic medium, the triplets

(
̂̃E,

̂̃B, k) and (
̂̃D,

̂̃H , k) form two right-handed coordinate systems shown in
Figure 1.3, irrespective of material parameters. However, such a general relation-

ship does not exists for the triplets (
̂̃E,

̂̃H , k) and (
̂̃D,

̂̃B, k). We shall see later
that the signs of the permittivity and permeability associated with a medium play
an important role in establishing functional relationships between the four field
variables.

The preceding Maxwell’s equations need to be modified when they are applied
to physical materials because of charge movement (conductance), induced polar-
ization, and induced magnetization within the medium. Charge movement in a
material occurs because the electric and magnetic fields exert force on charges.
Induced polarization within a material medium is a result of the rearrangement of
the bound electrons, and it is responsible for the appearance of additional charge
density known as the bound charge density. If these bound charges oscillate as
a result of an externally applied electromagnetic field, electric dipoles induce a
polarization current within the medium. In addition to the electric dipoles, a mag-
netization current can also be generated if magnetic dipoles are present in a medium.

E

B

k

D

H

k

~^

~^

~^

~^

Figure 1.3 An illustration of the orthogonality of the triplets (
̂̃E,

̂̃B, k) and (
̂̃D,

̂̃H , k).
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8 Introduction

Table 1.1. Constitutive relations for several types of optical media

Medium type Functional dependence Description

Simple ̂̃D = ε
̂̃E ε: constant, scalar̂̃B = µ
̂̃H µ: constant, scalar

Dispersive ̂̃D = ̂̃ε(k, ω)
̂̃E ̂̃ε(k, ω): complex function̂̃B = ̂̃µ(k, ω)
̂̃H ̂̃µ(k, ω): complex function

Anisotropic ̂̃D = ε0
̂̃E + ε0̂̃χe · ̂̃E ̂̃χe: 3 × 3 matrix̂̃B = µ0
̂̃H + µ0̂̃χm · ̂̃H ̂̃χm: 3 × 3 matrix

Bi-isotropic ̂̃D = ε
̂̃E + ξ

̂̃H ε, ξ : constant, scalarŝ̃B = ζ
̂̃E + µ

̂̃H ζ, µ: constant, scalars

All of these phenomena are incorporated within Maxwell’s equations through the
so-called constitutive relations among the four field vectors.

1.1.4 Constitutive relations for different optical media

The most general linear relationship among ̂̃E,
̂̃D,

̂̃H , and ̂̃B occurs in a
bi-anisotropic medium, and it can be written as

̂̃D(k, ω) = ̂̃ε(k, ω) · ̂̃E(k, ω) + ̂̃
ξ(k, ω) · ̂̃H (k, ω), (1.17a)̂̃B(k, ω) = ̂̃ζ (k, ω) · ̂̃E(k, ω) + ̂̃µ(k, ω) · ̂̃H (k, ω), (1.17b)

where ̂̃ε(k, ω), ̂̃ξ(k, ω), ̂̃ζ (k, ω), and ̂̃µ(k, ω) are in the form of 3 × 3 matrices.
However, some of those matrices are identically zero or have scalar values depend-
ing on the nature of material medium. The constitutive relations for several classes
of optical media are classified in Table 1.1, based on the dependence of the four
parameters on ω and k. A medium is called frequency dispersive if these parameters
depend explicitly on ω. Similarly, a medium is called spatially dispersive if they
depend explicitly on k.

Frequency dispersion is an inherent feature of any optical medium because no
real medium can respond to an electromagnetic field instantaneously. It is possible
to show that the frequency dependence of the permittivity of a medium is funda-
mentally related to the causality of the response of that medium that leads naturally
to the Kramers–Kronig relations [11,12] discussed later. Using these relations one
can also show that a frequency-dispersive medium is naturally lossy. Since the com-
monly used assumption of a lossless dispersive medium is not generally valid, the
notion of an optically thick, lossless medium needs to be handled very cautiously.
In certain cases, we may consider the frequency dependence of the refractive index
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1.2 Permittivity of isotropic materials 9

but neglect such dependence for the absorption. Generally, these kinds of assump-
tions lead to the prediction of noncausal behavior (e.g., a signal traveling faster
than the of speed of light in vacuum). However, if the frequency dependence of the
refractive index is considered only over a finite frequency range, absorption can be
neglected over that range without violating causality [13].

We do not consider spatial dispersion in this text because optical wavelengths
are much longer than atomic dimensions and inter-atomic spacing. It is interesting
to note that spatial dispersion is implicitly related to the magneto-electric response
of a medium. In a magneto-electric medium, the presence of electric fields causes
the medium to become magnetized, and the presence of magnetic fields makes the
medium polarized. It is evident from Eq. (1.16) that the magnetic field is completely
determined by the transverse part of the electric field in the ω ⊗ k space. Thus, it
is not possible, in principle, to separate the roles of electric and magnetic fields.

Most physical media are neither linear nor isotropic in the sense that their prop-
erties depend on both the strength of the local electric field and its direction. Also,
there exist optically active media that can rotate the state of polarization of the
electric field either clockwise (dextrorotation) or counterclockwise (levorotation).
Although we consider the nonlinear nature of an optical medium whenever rel-
evant, unless otherwise stated explicitly we do not cover this type of optically
active medium in this text. Furthermore, unless explicitly stated, we assume that
the medium is nonmagnetic. In such a medium, the parameters ξ and ζ in Eqs. (1.1)
vanish and the magnetic permeability can be replaced with its vacuum value µ0.
With these simplifications, we only need to know the permittivity ε to study wave
propagation in a nonmagnetic medium. It is common to introduce the susceptibility
χ of the medium by the relation ε = ε0(1 + χ).

1.2 Permittivity of isotropic materials

In this section we focus on an isotropic, homogeneous medium and ignore the
dependence of the permittivity ε on the propagation vector k. In the frequency
domain, this dielectric function is complex because, as mentioned earlier, it must
have a nonzero imaginary part to allow for absorption at certain frequencies that
correspond to medium resonances. As we show later, the real and imaginary parts
of the dielectric function are related to each other through the Kramers–Kronig
relations [11].

1.2.1 Debye-type permittivity and its extensions

In some cases one can model an optical medium as a collection of noninter-
acting dipoles, each of which responds to the optical field independently. The
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10 Introduction

electromagnetic response of such a medium is given by the Debye dielectric
function [14],

ε̃Debye(ω) = ε0

[
ε∞ + 
εp

1 − jωτp

]
, (1.18)

where ε∞ is the dielectric constant of the medium in the high-frequency limit and

εp = εs − ε∞ is the change in relative permittivity from its static value εs owing
to the relaxation time τp associated with the medium. The parameter ε∞ represents
the deformational electric polarization of positive and negative charge separation
due to the presence of an external electric field [15]. The ratio ε/ε0 is sometimes
referred to as the relative permittivity of the medium.

The permittivity εDebye(t) of the medium in the time domain is obtained by taking
the inverse Fourier transform of Eq. (1.18). If we introduce the susceptibility as
defined earlier, its time dependence for the Debye dielectric function is exponential
and is given by

χDebye(t) =
{


εp

τp
exp

(
− t

τp

)
if t > 0,

0 otherwise.
(1.19)

This equation shows the case of a medium with only one relaxation time. The
Debye dielectric function in Eq. (1.18) can be extended readily to a medium with
N relaxation times by using

ε̃Debye(ω) = ε0

[
ε∞ +

N∑
m=1


εm

1 − jωτm

]
. (1.20)

To account for the asymmetry and broadness of some experimentally observed
dielectric functions, a variant of Eq. (1.18) was suggested in Ref. [16]. This variant,
known as ε̃DHN(ω), introduces empirically two parameters, α and β:

ε̃DHN(ω) = ε0

[
ε∞ + 
εp

[1 + (−jωτp)α]β
]

. (1.21)

The value of α is adjusted to match the observed asymmetry in the shape of the
permittivity spectrum and β is used to control the broadness of the response. When
α = 1, this model is known as the Cole–Davidson model [17] and has the form

ε̃CD(ω) = ε0

[
ε∞ + 
εp

(1 − jωτp)β

]
, 0 < β ≤ 1. (1.22)
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