With over 200 types of cancer diagnosed to date, researchers the world over have been forced to rapidly update their understanding of the biology of cancer. In fact, only the study of the basic cellular processes, and how these are altered in cancer cells, can ultimately provide a background for rational therapies.

Bringing together the state-of-the-art contributions of international experts, *Systems Biology of Cancer* proposes an ultimate research goal for the whole scientific community: exploiting systems biology to generate in-depth knowledge based on blueprints that are unique to each type of cancer.

Readers are provided with a realistic view of what is known and what is yet to be uncovered on the aberrations in the fundamental biological processes, deregulation of major signaling networks, alterations in major cancers, and the strategies for using the scientific knowledge for effective diagnosis, prognosis, and drug discovery to improve public health.

Sam Thiagalingam is an Associate Professor of Genetics & Genomics, Medicine, and Pathology & Laboratory Medicine at the Boston University School of Medicine. He played a major role in establishing an association between genomic instability and loss of heterozygosity (LOH) in human cancers. He was the first to show that SMAD4 inactivation is a critical event during the late stages of colon cancer progression, and sustained TGFβ signaling events are required to maintain epigenetic memory during breast cancer progression. Dr. Thiagalingam also proposed a simple minded multi-modular molecular network (MMMN) cancer progression model as a road map to visualize the various gene alterations in modules of networks of pathways. His long-term goal is to identify novel cancer biomarkers and therapeutic targets by contributing to the “big picture” of interconnected networks of events that mediate cancer progression to metastasis using breast and colon cancers as the model systems.
To my parents

Vanniyan Sambunathan Seenithamby Sisupalapillai Sambasivamoorthy
and

Paramsothy Thangaretnaammal Malar Eliyathamby Sambasivamoorthy
for their righteous living and the respect for freedom of expression.
Contents

List of contributors ix
Preface xv

Part 1 – Introduction to modular organization of the networks of gene functions and cancer
1 Systems biology of cancer progression 1
Sam Thiagalingam

2 Lessons from cancer genome sequencing 7
Antoine Ho and Jeremy S. Edwards

3 Application of bioinformatics to analyze the expression of tissue-specific and housekeeping genes in cancer 20
Xijin Ge

Part 2 – Alterations in the regulatory networks of cellular and molecular events
4 Events at DNA replication origins and genome stability 35
Kathleen R. Nevis, Kimberly L. Raiford, Cyrus Vaziri and Jeanette Gowen Cook

5 Systems biology approaches bring new insights in the understanding of global gene regulatory mechanisms and their deregulation in cancer 56
Arnaud Krebs and László Tora

6 Regulation and dysregulation of protein synthesis in cancer cells 70
Michael J. Clemens, Androulla Elia and Simon J. Morley

Part 3 – Events responsible for aberrant genetic and epigenetic codes in cancer
7 Genomic instability and carcinogenesis 93
Mark E. Burkard and Prasad V. Jallepalli

8 Epigenetic code 113
José Ignacio Martin-Subero and Manel Esteller

9 MicroRNA epigenetic systems and cancer 134
Holly Lewis and Aurora Esquela-Kerscher

10 Dietary and environmental influences on the genomic and epigenomic codes in cancer 154
Hamid M. Abdolmaleky, Mohammad R. Eskandari and Jin-Rong Zhou

Part 4 – Functional networks of events that modulate phenotypic manifestation of cancer
11 Regulatory signaling networks in cell transformation and cancer 169
Yashaswi Shrestha and William C. Hahn

12 RAS signaling networks 183
Douglas V. Faller and Andrew M. Rankin

13 PI3K pathway in cancer 193
Amancio Carnero

14 TGFβ and BMP signaling in cancer 204
Panagiotis Papageorgis, Arthur W. Lambert, Sait Ozturk and Sam Thiagalingam
Contents

15 **The Wnt signaling network in cancer** 222
 Johanna Apfel, Jignesh R. Parikh, Patricia Reischmann, Rob M. Ewing, Oliver Müller, Yu Xia and Isabel Dominguez

16 **Apoptotic pathways and cancer** 256
 Jian Yu and Lin Zhang

17 **Molecular links between inflammation and cancer** 273
 Paola Allavena, Giovanni Germano and Alberto Mantovani

18 **Cancer metastasis** 282
 Sait Ozturk, Arthur W. Lambert, Chen Khuan Wong, Panagiotis Papageorgis and Sam Thiagalingam

19 **Cancer metabolism** 295
 Dimitrios Anastasiou, Jason W. Locasale and Matthew G. Vander Heiden

20 **Tumor microenvironment: blood vascular system in cancer metastasis** 309
 Shantibhusan Senapati, Rakesh K. Singh and Surinder K. Batra

Part 5 – Current state of the evolving MMMN cancer progression models of cancer

21 **Genetic alterations in glioblastoma multiforme** 323
 Giselle Y. López, Marc Samsky, Rosanne Jones, Cory Adamson and Hai Yan

22 **Breast cancer** 345
 Arthur W. Lambert, Sait Ozturk, Chen Khuan Wong, Panagiotis Papageorgis and Sam Thiagalingam

23 **The role of growth factor-induced changes in cell fate in prostate cancer progression** 361
 Min Yu, Gromoslaw A. Smolen, Daniel A. Haber and Shyamala Maheswaran

24 **Colon cancer** 377
 Anthony Scott and Zhenghe John Wang

25 **Biology of human stomach cancer** 386
 Bryan G. Sauer and Steven M. Powell

26 **Pancreatic cancer** 409
 Sergii Ivakhno, Kristopher Frese, Simon Tavaré, Christine Iacobuzio-Donahue and David Tuveson

27 **Deregulated signaling networks in lung cancer** 421
 Anurag Singh

28 **Modular signaling in hematopoietic malignancies** 443
 Adam Lerner

Part 6 – Applications of comprehensive cancer progression models in the fight against cancer

29 **Role of network biology and network medicine in early detection of cancer** 457
 Asad Umar and Simon Rosenfeld

30 **Systems biology in cancer biomarkers for early detection, diagnosis, and prognosis** 464
 Sudhir Srivastava and Karl Krueger

31 **Prognosis of cancer** 473
 Sharyn Katz and Wafik S. El-Deiry

32 **Cancer pharmacogenomics: challenges, promises, and its application to cancer drug discovery** 499
 Lihua Yu and Kevin Webster

Index 518

The color plate section appears between pages 320 and 321.
Contributors

Hamid M. Abdolmaleky
Biomedical Genetics
Boston University School of Medicine and Nutrition/Metabolism Laboratory
Harvard Medical School
Boston, MA
USA

Cory Adamson
Department of Surgery – Neurosurgery
Duke University School of Medicine
Durham, NC
USA

Paola Allavena
Department of Inflammation and Immunology, Humanitas Clinical and Research Center
Rozzano
Italy

Dimitrios Anastasiou
Division of Physiology and Metabolism
MRC National Institute for Medical Research
The Ridgeway, Mill Hill
London
UK

Johanna Apfel
Molecular Biology
Biotechnology and Biochemistry Group
University of Applied Sciences
Kaiserslautern
Germany

Surinder K. Batra
Department of Biochemistry and Molecular Biology
Eppley Cancer Institute
University of Nebraska Medical Center
Omaha, NE
USA

Mark E. Burkard
Department of Medicine – Hematology/Oncology
University of Wisconsin
Madison, WI
USA

Amancio Carnero
Instituto de Biomedicina de Sevilla
HUVR/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas
Sevilla
Spain

Michael J. Clemens
Department of Biochemistry and Molecular Biology
School of Life Sciences
University of Sussex
Brighton
UK

Jeanette Gowen Cook
Department of Biochemistry & Biophysics
University of North Carolina School of Medicine
Chapel Hill, NC
USA

Isabel Dominguez
Hematology-Oncology Section
Department of Medicine
Boston University School of Medicine
Boston, MA
USA

Jeremy S. Edwards
Molecular Genetics and Microbiology
University of New Mexico School of Medicine and Chemical and Nuclear Engineering
University of New Mexico
Albuquerque, NM
USA
List of contributors

Wafik S. El-Deiry
Fox Chase Cancer Center
Philadelphia, PA
USA

Androulla Elia
Biomedical Sciences
St. George’s University of London
London
UK

Mohammad R. Eskandari
Nutrition/Metabolism Laboratory
Harvard Medical School
Boston, MA
USA

Aurora Esquela-Kerscher
Department of Microbiology & Molecular Cell Biology
Leroy T. Canoles Jr. Cancer Research Center
Eastern Virginia Medical School
Norfolk, VA
USA

Manel Esteller
Cancer Epigenetics and Biology Program (PEBC)
Institut d’Investigació Biomèdica de Bellvitge (IDIBELL)
Barcelona, Catalonia
Spain

Rob M. Ewing
Centre for Biological Sciences
University of Southampton
Southampton
UK

Douglas V. Faller
Cancer Center
Boston University School of Medicine
Boston, MA
USA

Kristopher Frese
Cancer Research UK Cambridge Institute
University of Cambridge
Cambridge
UK

Xijin Ge
Department of Mathematics and Statistics
South Dakota State University
Department of Mathematics and Statistics

Brookings, SD
USA

Giovanni Germano
Department of Inflammation and Immunology
Humanitas Clinical and Research Center
Rozzano
Italy

Daniel A. Haber
Massachusetts General Hospital Cancer Center
Harvard Medical School
Charlestown, MA
USA

William C. Hahn
Department of Medical Oncology
Dana-Farber Cancer Institute
Harvard Medical School
Boston, MA
USA

Antoine Ho
Molecular Genetics and Microbiology
University of New Mexico School of Medicine
Albuquerque, NM
USA

Christine Iacobuzio-Donahue
Department of Pathology
Johns Hopkins Sidney Kimmel Comprehensive Cancer Center
Baltimore, MD
USA

Sergii Ivakhno
Cancer Research UK Cambridge Institute
University of Cambridge
Cambridge
UK

Prasad V. Jallepalli
Molecular Biology Program
Memorial Sloan-Kettering Cancer Center
New York, NY
USA

Rosanne Jones
Department of Pathology
Duke University Medical Center
Durham, NC
USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharyn Katz</td>
<td>Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA</td>
</tr>
<tr>
<td>Arnaud Krebs</td>
<td>Functional Genomics Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UsS), Strasbourg, France</td>
</tr>
<tr>
<td>Karl Krueger</td>
<td>Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA</td>
</tr>
<tr>
<td>Shyamala Maheswaran</td>
<td>Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA</td>
</tr>
<tr>
<td>Alberto Mantovani</td>
<td>Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy</td>
</tr>
<tr>
<td>José Ignacio Martin-Subero</td>
<td>Cancer Epigenetics and Biology Program (PEBC), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Catalonia, Spain</td>
</tr>
<tr>
<td>Simon J. Morley</td>
<td>Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton, UK</td>
</tr>
<tr>
<td>Oliver Müller</td>
<td>Molecular Biology, Biotechnology and Biochemistry Group, University of Applied Sciences, Kaiserslautern, Germany</td>
</tr>
<tr>
<td>Kathleen R. Nevis</td>
<td>Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, NC, USA</td>
</tr>
<tr>
<td>Sait Ozturk</td>
<td>Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA</td>
</tr>
<tr>
<td>Panagiotis Papageorgis</td>
<td>Departments of Biological Sciences and Mechanical Engineering, University of Cyprus, Nicosia, Cyprus</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
List of contributors

Jignesh R. Parikh
Bioinformatics Program
Boston University
Boston, MA
USA

Steven M. Powell
Gastroenterology & Hepatology
University of Virginia School of Medicine
Charlottesville, VA
USA

Kimberly L. Raiford
Department of Biochemistry and Biophysics
University of North Carolina School of Medicine
Chapel Hill, NC
USA

Andrew M. Rankin
Cancer Center
Boston University School of Medicine
Boston, MA
USA

Patricia Reischmann
Molecular Biology
Biotechnology and Biochemistry Group
University of Applied Sciences
Kaiserslautern
Germany

Simon Rosenfeld
Biometry Research Group
Division of Cancer Prevention
National Cancer Institute
Rockville, MD
USA

Marc Samsky
Department of Pathology
Duke University Medical Center
Durham, NC
USA

Anthony Scott
Department of Genetics
Case Western Reserve University School of Medicine
Cleveland, OH
USA

Shantibhusan Senapati
Institute of Life Sciences
Bhubaneswar
India

Yashaswi Shrestha
Dana-Farber Cancer Institute
Harvard Medical School and
Broad Institute of Harvard and MIT
Boston, MA
USA

Anurag Singh
Department of Pharmacology and
The Cancer Center
Boston University School of Medicine
Boston, MA
USA

Rakesh K. Singh
Department of Pathology and Microbiology
University of Nebraska Medical Center
Omaha, NE
USA

Gromoslaw A. Smolen
Massachusetts General Hospital Cancer Center
Harvard Medical School
Charlestown, MA
USA

Sudhir Srivastava
Cancer Biomarkers Research Group
Division of Cancer Prevention
National Cancer Institute
Rockville, MD
USA

Simon Tavaré
Cancer Research UK Cambridge Institute
University of Cambridge
Cambridge
UK

Sam Thiagalingam
Biomedical Genetics, Cancer Center
Genetics & Genomics and Pathology & Laboratory Medicine
Boston University School of Medicine
Boston, MA
USA
List of contributors

László Tora
Functional Genomics Department
Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)
Université de Strasbourg (UdS)
Strasbourg
France

David Tuveson
Cancer Research UK Cambridge Research Institute
University of Cambridge
Cambridge, UK and
Cold Spring Harbor Laboratory
Cold Spring Harbor, NY
USA

Asad Umar
Division of Cancer Prevention
National Cancer Institute
Rockville, MD
USA

Matthew G. Vander Heiden
Koch Institute for Integrative Cancer Research
Massachusetts Institute of Technology
Cambridge, MA
USA

Cyrus Vaziri
Department of Pathology and Laboratory Medicine
University of North Carolina School of Medicine
UNC Lineberger Comprehensive Cancer Center
Chapel Hill, NC
USA

Zhenghe John Wang
Department of Genetics
Case Western Reserve University School of Medicine
Cleveland, OH
USA

Kevin Webster
Cancer Bioscience
AstraZeneca R&D Boston
Waltham, MA
USA

Chen Khuan Wong
Genetics and Genomics
Boston University School of Medicine
Boston, MA
USA

Yu Xia
Department of Bioengineering
McGill University
Montreal, Quebec
Canada

Hai Yan
Department of Pathology
Duke University School of Medicine
Durham, NC
USA

Jian Yu
Department of Pathology
University of Pittsburgh Cancer Institute
University of Pittsburgh School of Medicine
Pittsburgh, PA
USA

Lihua Yu
Cancer Bioscience
AstraZenica R&D Boston
Waltham, MA
USA

Min Yu
Massachusetts General Hospital Cancer Center
Harvard Medical School
Charlestown, MA
USA

Lin Zhang
Department of Pharmacology
University of Pittsburgh Cancer Institute
University of Pittsburgh School of Medicine
Pittsburgh, PA
USA

Jin-Rong Zhou
Nutrition/Metabolism Laboratory
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA
USA
The heterogeneity in alterations and the failure to
detect consistent changes in a unique set of gene(s)
or gene products in similar and histologically well
defined neoplasms pose a challenge for the accurate
diagnosis, prognosis and therapy of cancer. Conse-
sequently, there is a need to integrate the individual
observations made in tumor cells derived from
numerous sources using the systems biology
approach to identify a panel of alternate target
genes/gene products as biomarkers for diagnosis
and/or prognosis and as targets for therapy. This goal
could be achieved with efficacy by dissecting alter-
ations in cancer in interconnected modular networks
of pathways represented in multi-modular molecular
networks (MMMN) specific for progression of indi-
vidual cancers. This landmark volume consisting of a
collection of chapters examines the fundamentals of
the molecular basis of the genesis of cancer in parts
devoted to the overall big picture, basic biochemical
events, manifestation of fingerprints of alterations,
units of coordinated events, state of knowledge of
the integrated progression of events for specific
cancers and the future prospects and implications of
the various MMMN cancer progression models in the
fight against cancer.

My sincere thanks to the distinguished scientists
for graciously contributing chapters on their expert-
ise. My special gratitude to my doctoral thesis advisor,
Professor Lawrence Grossman, for his guidance in
shaping up my career as a molecular biologist and
for stimulating my passion to undertake cancer
research as the next step to studying DNA repair
mechanisms, and to my post-doctoral advisor, Pro-
fessor Bert Vogelstein, for being a role model and for
sharing his wealth of knowledge and expertise in the
field of cancer genetics and biology. My special appreci-
tion to Allan Ross (Former Executive Editor, Medi-
cine and Life Sciences, Cambridge University Press,
New York) for inviting me to conceive this volume
and for all his assistance at the initial stages of the
development of this volume. I am indebted to my
students, Arthur Lambert and Chen Wong for critical
comments and proofreading and Panagiotis Papa-
georgis and Sait Ozturk for help with illustrations.
I am thankful to Ilaria Tassistro (Assistant Editor,
Life Sciences, Cambridge University Press, Cam-
bridge, UK) and Katrina Halliday (Editor and Pub-
lisher, Life Sciences, Cambridge University Press,
Cambridge, UK) for their patience with the last
minute delays and guidance and Kath Pilgrem (Copy
Editor) and Jessica Ann Murphy (Production Editor
Academic Books, Cambridge University Press, Cam-
bridge, UK) for their help with finalizing this volume
for publication. On behalf of the authors, I would also
like to thank the American Association for Cancer
Research, Nature Publishing Group, Wolters Kluwer
Health, and others for allowing partial or full repro-
duction of their previously published figures.

This project would not have been completed
without the encouragement, support and the enduring
love of my wife Arunthathi Cumaraswamy
Thiagalingam and the unconditional love of my chil-
dren Natasha Thivyaa Thiagalingam and Aaron Gajan
Thiagalingam.