Pathogenic microorganisms exploit a number of different routes for transmission and this book demonstrates how the spread of disease can be prevented through the practices of disinfection and control of microbial growth.

The book is organized into four parts. The first part addresses the processes of infectious disease transmission and considers how best to minimize the spread of disease. The second part deals with the prevention of infectious diseases that are transmitted by water or food. Transmission by aerosols, environmental surfaces and medical devices is considered next. The fourth and final part discusses some general mechanisms of disinfection.

This book includes contributions from leading scientists, who provide a wide-ranging synthesis of the problems and prospects for containing the spread of human infectious diseases.
Modeling disease transmission
and its prevention by disinfection
Edited by CHRISTON J. HURST

Modeling disease transmission and its prevention by disinfection
For Pei-Fung, and our children Rachel and Allen
Contents

List of contributors xi
Preface xv

Part 1 Health and disease 1
1 The transmission and prevention of infectious disease 3
 Christon J. Hurst and Patricia A. Murphy
2 Strategies for modeling microbial colonization of the human body in health and disease 55
 Robin A. Ross and Mei-Ling T. Lee

Part 2 Preventing disease transmission by water and food 73
3 The role of pathogen monitoring in microbial risk assessment 75
 Joan B. Rose, John T. Lisle and Charles N. Haas
4 Estimating the risk of acquiring infectious disease from ingestion of water 99
 Christon J. Hurst, Robert M. Clark and Stig E. Regli
5 Bacterial resistance to potable water disinfectants 140
 Mic H. Stewart and Betty H. Olson
6 Preventing foodborne infectious disease 193
 Christon J. Hurst
Contents

Part 3 Preventing disease transmission by aerosols, surfaces and medical devices

7 *Disinfection of microbial aerosols*
Scott Clark and Pasquale Scarpino 215

8 *Transmission of viral infections through animate and inanimate surfaces and infection control through chemical disinfection*
Syed A. Sattar and V. Susan Springthorpe 224

9 *The role of chemical disinfectants in controlling bacterial contaminants on environmental surfaces*
Donna J. Gaber, Timothy M. Cusack and Elizabeth Scott 258

10 *Sterilization and disinfection of medical devices*
Aaron B. Margolin and Virginia C. Chamberlain 285

Part 4 General mechanisms of disinfection

11 *Ultraviolet light disinfection of water and wastewater*
Peter F. Roessler and Blaine F. Severin 313

12 *Thermal inactivation of microorganisms*
Guy Le Jean and Gérard Abraham 369

Index 397
Contributors

Dr Gérard Abraham
Laboratoire de Maîtrise des Technologies Agro-Industrielles (LMTAI),
Pôle Sciences et Technologie de l’Université de la Rochelle, Avenue
Marillac, 17042 La Rochelle Cedex 1, France

Dr Virginia C. Chamberlain
Center for Devices and Radiological Health, US Food and Drug Admin-
istration, 20850, Washington DC, USA

Dr Robert M. Clark
Risk Reduction Engineering Laboratory, United States of America
Environmental Protection Agency, Cincinnati OH 45268, USA

Dr Scott Clark
Departments of Environmental Health, and Civil & Environmental
Engineering, University of Cincinnati, Cincinnati OH 45267–0056, USA

Dr Timothy M. Cusack
Reckitt & Colman Inc., L & F Products Division, One Philips Parkway,
Montvale NJ 07645–1810, USA

Dr Donna J. Gaber
Reckitt & Colman Inc., One Philips Parkway, Montvale NJ 07645–1810,
USA

Dr Charles N. Haas
Environmental Studies Institute, Drexel University, Building 29-W,
Philadelphia PA 19104, USA

Dr Christon J. Hurst
Risk Reduction Engineering Laboratory, United States of America
Contributors

Environmental Protection Agency, 26 Martin Luther King Drive West, Cincinnati OH 45268, USA

Dr Mei-Ling T. Lee
Channing Laboratory, Brigham & Women’s Hospital and Harvard Medical School, 180 Longwood Avenue, Boston MA 02115, USA

Dr Guy Le Jean
Laboratoire d’Energetique et de Thermique Industrielle de l’est Francais (LETIEF), URA CNRS 1508, IUT de Creteil, Université Paris-XII – Val de Marne, 94010 Creteil Cedex, France

Dr John T. Lisle
Department of Marine Sciences, University of South Florida, 140 South 7th Avenue, St Petersburg FL 33701, USA

Dr Aaron B. Margolin
Department of Microbiology, University of New Hampshire, Spaulding Life Sciences Building, Durham NH 03824, USA

Dr Patricia A. Murphy
Environmental Criteria and Assessment Office, United States of America Environmental Protection Agency, 26 Martin Luther King Drive West, Cincinnati OH 45268, USA

Dr Betty H. Olson
Program in Social Ecology, University of California, Irvine CA 92717, USA

Dr Stig E. Regli
Office of Water, United States of America Environmental Protection Agency, 401 M Street, SW, Washington DC 20460, USA

Dr Peter F. Roessler
Analytical Microbiology Research and Development, Amway Corporation, 7575 Fulton Street East, Ada MI 49355–001, USA

Dr Joan B. Rose
Department of Marine Sciences, University of South Florida, 140 South 7th Avenue, St Petersburg FL 33701, USA

Dr Robin A. Ross
Channing Laboratory, Brigham & Women’s Hospital and Harvard Medical School, 180 Longwood Avenue, Boston MA 02115, USA
Contributors xiii

Dr Elizabeth Scott
Consultant in Food and Environmental Hygiene, Newton MA 02159–2535, USA

Dr Syed A. Sattar
Department of Microbiology & Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa Ontario K1H 8M5, Canada

Dr Pasquale Scarpino
Departments of Environmental Health, and Civil & Environmental Engineering, University of Cincinnati, Cincinnati OH 45267–0056, USA

Dr Blaine F. Severin
Director of Environmental Technology, Michigan Biotechnology Institute, 3900 Collins Road, Lansing MI 37610, USA

V. Susan Springthorpe
Department of Microbiology & Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa Ontario K1H 8M5, Canada

Dr Mic H. Stewart
Water Quality Division, Metropolitan Water District of Southern California, 700 Moreno Avenue, La Verne CA 91750, USA
Preface

We have always had theories about how diseases are transmitted, just as we have always ascribed to methods for preventing disease transmission. Fortunately, our science has progressed to the point that we no longer believe influenza to be caused by the influence of the stars, and we no longer carry nosegays of flowers as protection against the evil vapors once believed to transmit the plague. Instead, we have come to learn that both of these diseases, as well as many others, result from our becoming infected by pathogenic microorganisms. We have also come to understand that not all microorganisms cause disease, and in fact our bodies are naturally colonized by nonpathogenic microorganisms whose presence serves to help protect us against becoming colonized by pathogens. Similarly, we sometimes add nonpathogenic microorganisms as a means of preserving foods against the activity of other organisms that might cause spoilage or disease.

Most of the routes by which pathogens are transmitted involve a period of time when those organisms are exposed to the environment, affording us the opportunity to prevent their transmission through use of disinfection practices. Disinfection can occur naturally since, with the passage of time, any population of microorganisms will die away under conditions that do not favor their replication. The ancient discovery that immersing objects in fire had purifying properties has led to our use of heat treatments to destroy microbial contaminants on objects and in foods. From the knowledge that sunlight had the capability to destroy the causes of infectious diseases, we have progressed to the development of artificial sources of ultraviolet, microwave and gamma irradiation for use in destroying pathogens. Old habits of attempting to purify objects by either burying them in soil, or casting them into water, have led to the development of chemical disinfectants. Our ability to model the processes of disease transmission and disinfection helps us to understand these processes, and affords us knowledge that aids us in achieving our goal of reducing disease-related suffering.
Preface

I wish to thank Gerard N. Stelma and Elizabeth C. Martinson for editing my chapter on diseases associated with foods. The United States of America’s Environmental Protection Agency was not involved with the editing of this book.

Christon J. Hurst
Cincinnati, Ohio, USA