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Introduction

The goal of expressing geometrical relationships through algebraic equations has
dominated much of the development of mathematics. This line of thinking goes
back to the ancient Greeks, who constructed a set of geometric laws to describe
the world as they saw it. Their view of geometry was largely unchallenged until
the eighteenth century, when mathematicians discovered new geometries with
different properties from the Greeks’ Euclidean geometry. Each of these new
geometries had distinct algebraic properties, and a major preoccupation of nine-
teenth century mathematicians was to place these geometries within a unified
algebraic framework. One of the key insights in this process was made by W.K.
Clifford, and this book is concerned with the implications of his discovery.
Before we describe Clifford’s discovery (in chapter 2) we have gathered to-

gether some introductory material of use throughout this book. This chapter
revises basic notions of vector spaces, emphasising pictorial representations of
the underlying algebraic rules — a theme which dominates this book. The ma-
terial is presented in a way which sets the scene for the introduction of Clifford’s
product, in part by reflecting the state of play when Clifford conducted his re-
search. To this end, much of this chapter is devoted to studying the various
products that can be defined between vectors. These include the scalar and
vector products familiar from three-dimensional geometry, and the complex and
quaternion products. We also introduce the outer or exterior product, though
this is covered in greater depth in later chapters. The material in this chapter is
intended to be fairly basic, and those impatient to uncover Clifford’s insight may
want to jump straight to chapter 2. Readers unfamiliar with the outer product
are encouraged to read this chapter, however, as it is crucial to understanding
Clifford’s discovery.

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521480221 - Geometric Algebra for Physicists
Chris Doran and Anthony Lasenby
Excerpt
More information

http://www.cambridge.org/0521480221
http://www.cambridge.org
http://www.cambridge.org


INTRODUCTION

1.1 Vector (linear) spaces

At the heart of much of geometric algebra lies the idea of vector, or linear spaces.
Some properties of these are summarised here and assumed throughout this book.
In this section we talk in terms of vector spaces, as this is the more common
term. For all other occurrences, however, we prefer to use the term linear space.
This is because the term ‘vector ’ has a very specific meaning within geometric
algebra (as the grade-1 elements of the algebra).

1.1.1 Properties

Vector spaces are defined in terms of two objects. These are the vectors, which
can often be visualised as directions in space, and the scalars, which are usually
taken to be the real numbers. The vectors have a simple addition operation rule
with the following obvious properties:

(i) Addition is commutative:

a+ b = b+ a. (1.1)

(ii) Addition is associative:

a+ (b+ c) = (a+ b) + c. (1.2)

This property enables us to write expressions such as a + b + c without
ambiguity.

(iii) There is an identity element, denoted 0:

a+ 0 = a. (1.3)

(iv) Every element a has an inverse −a:

a+ (−a) = 0. (1.4)

For the case of directed line segments each of these properties has a clear geo-
metric equivalent. These are illustrated in figure 1.1.
Vector spaces also contain a multiplication operation between the scalars and

the vectors. This has the property that for any scalar λ and vector a, the product
λa is also a member of the vector space. Geometrically, this corresponds to the
dilation operation. The following further properties also hold for any scalars λ, µ

and vectors a and b:

(i) λ(a+ b) = λa+ λb;
(ii) (λ+ µ)a = λa+ µa;
(iii) (λµ)a = λ(µa);
(iv) if 1λ = λ for all scalars λ then 1a = a for all vectors a.
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1.1 VECTOR (LINEAR) SPACES
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Figure 1.1 A geometric picture of vector addition. The result of a + b is
formed by adding the tail of b to the head of a. As is shown, the resultant
vector a + b is the same as b + a. This finds an algebraic expression in the
statement that addition is commutative. In the right-hand diagram the
vector a + b + c is constructed two different ways, as a + (b + c) and as
(a+ b)+ c. The fact that the results are the same is a geometric expression
of the associativity of vector addition.

The preceding set of rules serves to define a vector space completely. Note that
the + operation connecting scalars is different from the + operation connecting
the vectors. There is no ambiguity, however, in using the same symbol for both.
The following two definitions will be useful later in this book:

(i) Two vector spaces are said to be isomorphic if their elements can be
placed in a one-to-one correspondence which preserves sums, and there
is a one-to-one correspondence between the scalars which preserves sums
and products.

(ii) If U and V are two vector spaces (sharing the same scalars) and all the
elements of U are contained in V, then U is said to form a subspace of V.

1.1.2 Bases and dimension

The concept of dimension is intuitive for simple vector spaces — lines are one-
dimensional, planes are two-dimensional, and so on. Equipped with the axioms
of a vector space we can proceed to a formal definition of the dimension of a
vector space. First we need to define some terms.

(i) A vector b is said to be a linear combination of the vectors a1, . . . , an if
scalars λ1, . . . , λn can be found such that

b = λ1a1 + · · ·+ λnan =
n∑

i=1

λiai. (1.5)

(ii) A set of vectors {a1, . . . , an} is said to be linearly dependent if scalars
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INTRODUCTION

λ1, . . . , λn (not all zero) can be found such that

λ1a1 + · · ·+ λnan = 0. (1.6)

If such a set of scalars cannot be found, the vectors are said to be linearly
independent.

(iii) A set of vectors {a1, . . . , an} is said to span a vector space V if every
element of V can be expressed as a linear combination of the set.

(iv) A set of vectors which are both linearly independent and span the space
V are said to form a basis for V.

These definitions all carry an obvious, intuitive picture if one thinks of vectors
in a plane or in three-dimensional space. For example, it is clear that two
independent vectors in a plane provide a basis for all vectors in that plane,
whereas any three vectors in the plane are linearly dependent. These axioms and
definitions are sufficient to prove the basis theorem, which states that all bases
of a vector space have the same number of elements. This number is called the
dimension of the space. Proofs of this statement can be found in any textbook
on linear algebra, and a sample proof is left to work through as an exercise. Note
that any two vector spaces of the same dimension and over the same field are
isomorphic.
The axioms for a vector space define an abstract mathematical entity which

is already well equipped for studying problems in geometry. In so doing we are
not compelled to interpret the elements of the vector space as displacements.
Often different interpretations can be attached to isomorphic spaces, leading to
different types of geometry (affine, projective, finite, etc.). For most problems
in physics, however, we need to be able to do more than just add the elements
of a vector space; we need to multiply them in various ways as well. This is
necessary to formalise concepts such as angles and lengths and to construct
higher-dimensional surfaces from simple vectors.
Constructing suitable products was a major concern of nineteenth century

mathematicians, and the concepts they introduced are integral to modern math-
ematical physics. In the following sections we study some of the basic concepts
that were successfully formulated in this period. The culmination of this work,
Clifford’s geometric product, is introduced separately in chapter 2. At various
points in this book we will see how the products defined in this section can all
be viewed as special cases of Clifford’s geometric product.

1.2 The scalar product

Euclidean geometry deals with concepts such as lines, circles and perpendicular-
ity. In order to arrive at Euclidean geometry we need to add two new concepts
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1.2 THE SCALAR PRODUCT

to our vector space. These are distances between points, which allow us to de-
fine a circle, and angles between vectors so that we can say that two lines are
perpendicular. The introduction of a scalar product achieves both of these goals.
Given any two vectors a, b, the scalar product a ·b is a rule for obtaining a

number with the following properties:

(i) a·b = b·a;
(ii) a·(λb) = λ(a·b);
(iii) a·(b+ c) = a·b+ a·c;
(iv) a·a > 0, unless a = 0.

(When we study relativity, this final property will be relaxed.) The introduction
of a scalar product allows us to define the length of a vector, |a|, by

|a| = √
(a·a). (1.7)

Here, and throughout this book, the positive square root is always implied by
the

√
symbol. The fact that we now have a definition of lengths and distances

means that we have specified a metric space. Many different types of metric
space can be constructed, of which the simplest are the Euclidean spaces we
have just defined.
The fact that for Euclidean space the inner product is positive-definite means

that we have a Schwarz inequality of the form

|a·b| ≤ |a| |b|. (1.8)

The proof is straightforward:

(a+ λb)·(a+ λb) ≥ 0 ∀λ
⇒ a·a+ 2λa·b+ λ2b·b ≥ 0 ∀λ

⇒ (a·b)2 ≤ a·a b·b, (1.9)

where the last step follows by taking the discriminant of the quadratic in λ.
Since all of the numbers in this inequality are positive we recover (1.8). We can
now define the angle θ between a and b by

a·b = |a||b| cos(θ). (1.10)

Two vectors whose scalar product is zero are said to be orthogonal. It is usually
convenient to work with bases in which all of the vectors are mutually orthogonal.
If all of the basis vectors are further normalised to have unit length, they are
said to form an orthonormal basis. If the set of vectors {e1, . . . , en} denote such
a basis, the statement that the basis is orthonormal can be summarised as

ei ·ej = δij . (1.11)
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INTRODUCTION

Here the δij is the Kronecker delta function, defined by

δij =

{
1 if i = j,

0 if i �= j.
(1.12)

We can expand any vector a in this basis as

a =
n∑

i=1

aiei = aiei, (1.13)

where we have started to employ the Einstein summation convention that pairs
of indices in any expression are summed over. This convention will be assumed
throughout this book. The {ai} are the components of the vector a in the {ei}
basis. These are found simply by

ai = ei ·a. (1.14)

The scalar product of two vectors a = aiei and b = biei can now written simply
as

a·b = (aiei)·(bjej) = aibj ei ·ej = aibjδij = aibi. (1.15)

In spaces where the inner product is not positive-definite, such as Minkowski
spacetime, there is no equivalent version of the Schwarz inequality. In such
cases it is often only possible to define an ‘angle’ between vectors by replacing
the cosine function with a cosh function. In these cases we can still introduce
orthonormal frames and use these to compute scalar products. The main modi-
fication is that the Kronecker delta is replaced by ηij which again is zero if i �= j,
but can take values ±1 if i = j.

1.3 Complex numbers

The scalar product is the simplest product one can define between vectors, and
once such a product is defined one can formulate many of the key concepts of
Euclidean geometry. But this is by no means the only product that can be defined
between vectors. In two dimensions a new product can be defined via complex
arithmetic. A complex number can be viewed as an ordered pair of real numbers
which represents a direction in the complex plane, as was realised by Wessel in
1797. Their product enables complex numbers to perform geometric operations,
such as rotations and dilations. But suppose that we take the complex number
z = x+ iy and square it, forming

z2 = (x+ iy)2 = x2 − y2 + 2xyi. (1.16)

In terms of vector arithmetic, neither the real nor imaginary parts of this ex-
pression have any geometric significance. A more geometrically useful product
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1.4 QUATERNIONS

is defined instead by

zz∗ = (x+ iy)(x− iy) = x2 + y2, (1.17)

which returns the square of the length of the vector. A product of two vectors
in a plane, z and w = u+ vi, can therefore be constructed as

zw∗ = (x+ iy)(u− iv) = xu+ vy + i(uy − vx). (1.18)

The real part of the right-hand side recovers the scalar product. To understand
the imaginary term consider the polar representation

z = |z|eiθ, w = |w|eiφ (1.19)

so that

zw∗ = |z||w|ei(θ − φ). (1.20)

The imaginary term has magnitude |z||w| sin(θ − φ), where θ − φ is the angle
between the two vectors. The magnitude of this term is therefore the area of
the parallelogram defined by z and w. The sign of the term conveys information
about the handedness of the area element swept out by the two vectors. This
will be defined more carefully in section 1.6.
We thus have a satisfactory interpretation for both the real and imaginary

parts of the product zw∗. The surprising feature is that these are still both parts
of a complex number. We thus have a second interpretation for complex addition,
as a sum between scalar objects and objects representing plane segments. The
advantages of adding these together are precisely the advantages of working with
complex numbers as opposed to pairs of real numbers. This is a theme to which
we shall return regularly in following chapters.

1.4 Quaternions

The fact that complex arithmetic can be viewed as representing a product for
vectors in a plane carries with it a further advantage — it allows us to divide
by a vector. Generalising this to three dimensions was a major preoccupation
of the physicist W.R. Hamilton (see figure 1.2). Since a complex number x+ iy

can be represented by two rectangular axes on a plane it seemed reasonable to
represent directions in space by a triplet consisting of one real and two complex
numbers. These can be written as x+ iy+jz, where the third term jz represents
a third axis perpendicular to the other two. The complex numbers i and j have
the properties that i2 = j2 = −1. The norm for such a triplet would then be

(x+ iy + jz)(x− iy − jz) = (x2 + y2 + z2)− yz(ij + ji). (1.21)

The final term is problematic, as one would like to recover the scalar product
here. The obvious solution to this problem is to set ij = −ji so that the last
term vanishes.
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INTRODUCTION

Figure 1.2 William Rowan Hamilton 1805–1865. Inventor of quaternions,
and one of the key scientific figures of the nineteenth century. He spent
many years frustrated at being unable to extend his theory of couples of
numbers (complex numbers) to three dimensions. In the autumn of 1843
he returned to this problem, quite possibly prompted by a visit he received
from the young German mathematician Eisenberg. Among Eisenberg’s
papers was the observation that matrices form the elements of an alge-
bra that was much like ordinary arithmetic except that multiplication was
non-commutative. This was the vital step required to find the quater-
nion algebra. Hamilton arrived at this algebra on 16 October 1843 while
out walking with his wife, and carved the equations in stone on Brougham
Bridge. His discovery of quaternions is perhaps the best-documented math-
ematical discovery ever.

The anticommutative law ij = −ji ensures that the norm of a triplet behaves
sensibly, and also that multiplication of triplets in a plane behaves in a reasonable
manner. The same is not true for the general product of triplets, however.
Consider

(a+ ib+ jc)(x+ iy + jz) = (ax− by − cz) + i(ay + bx)

+ j(az + cx) + ij(bz − cy). (1.22)

Setting ij = −ji is no longer sufficient to remove the ij term, so the algebra
does not close. The only thing for Hamilton to do was to set ij = k, where k is
some unknown, and see if it could be removed somehow. While walking along
the Royal Canal he suddenly realised that if his triplets were instead made up
of four terms he would be able to close the algebra in a simple, symmetric way.
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1.4 QUATERNIONS

To understand his discovery, consider

(a+ ib+ jc+ kd)(a− ib− jc− kd)

= a2 + b2 + c2 + d2(−k2)− bd(ik + ki)− cd(jk + kj), (1.23)

where we have assumed that i2 = j2 = −1 and ij = −ji. The expected norm of
the above product is a2 + b2 + c2 + d2, which is obtained by setting k2 = −1 and
ik = −ki and jk = −kj. So what values do we use for jk and ik? These follow
from the fact that ij = k, which gives

ik = i(ij) = (ii)j = −j (1.24)

and

kj = (ij)j = −i. (1.25)

Thus the multiplication rules for quaternions are

i2 = j2 = k2 = −1 (1.26)

and

ij = −ji = k, jk = −kj = i, ki = −ik = j. (1.27)

These can be summarised neatly as i2 = j2 = k2 = ijk = −1. It is a simple
matter to check that these multiplication laws define a closed algebra.
Hamilton was so excited by his discovery that the very same day he obtained

leave to present a paper on the quaternions to the Royal Irish Academy. The
subsequent history of the quaternions is a fascinating story which has been de-
scribed by many authors. Some suggested material for further reading is given
at the end of this chapter. In brief, despite the many advantages of working with
quaternions, their development was blighted by two major problems.
The first problem was the status of vectors in the algebra. Hamilton identified

vectors with pure quaternions, which had a null scalar part. On the surface
this seems fine — pure quaternions define a three-dimensional vector space.
Indeed, Hamilton invented the word ‘vector ’ precisely for these objects and this
is the origin of the now traditional use of i, j and k for a set of orthonormal
basis vectors. Furthermore, the full product of two pure quaternions led to the
definition of the extremely useful cross product (see section 1.5). The problem
is that the product of two pure vectors does not return a new pure vector, so
the vector part of the algebra does not close. This means that a number of ideas
in complex analysis do not extend easily to three dimensions. Some people felt
that this meant that the full quaternion product was of little use, and that the
scalar and vector parts of the product should be kept separate. This criticism
misses the point that the quaternion product is invertible, which does bring many
advantages.
The second major difficulty encountered with quaternions was their use in
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INTRODUCTION

describing rotations. The irony here is that quaternions offer the clearest way
of handling rotations in three dimensions, once one realises that they provide
a ‘spin-1/2’ representation of the rotation group. That is, if a is a vector (a
pure quaternion) and R is a unit quaternion, a new vector is obtained by the
double-sided transformation law

a′ = RaR∗, (1.28)

where the * operation reverses the sign of all three ‘imaginary’ components. A
consequence of this is that each of the basis quaternions i, j and k generates
rotations through π. Hamilton, however, was led astray by the analogy with
complex numbers and tried to impose a single-sided transformation of the form
a′ = Ra. This works if the axis of rotation is perpendicular to a, but otherwise
does not return a pure quaternion. More damagingly, it forces one to interpret
the basis quaternions as generators of rotations through π/2, which is simply
wrong!
Despite the problems with quaternions, it was clear to many that they were

a useful mathematical system worthy of study. Tait claimed that quaternions
‘freed the physicist from the constraints of coordinates and allowed thoughts to
run in their most natural channels’ — a theme we shall frequently meet in this
book. Quaternions also found favour with the physicist James Clerk Maxwell,
who employed them in his development of the theory of electromagnetism. De-
spite these successes, however, quaternions were weighed down by the increas-
ingly dogmatic arguments over their interpretation and were eventually displaced
by the hybrid system of vector algebra promoted by Gibbs.

1.5 The cross product

Two of the lasting legacies of the quaternion story are the introduction of the
idea of a vector, and the cross product between two vectors. Suppose we form
the product of two pure quaternions a and b, where

a = a1i+ a2j + a3k, b = b1i+ b2j + b3k. (1.29)

Their product can be written

ab = −aibi + c, (1.30)

where c is the pure quaternion

c = (a2b3 − a3b2)i+ (a3b1 − a1b3)j + (a1b2 − a2b1)k. (1.31)

Writing c = c1i+ c2j + c3k the component relation can be written as

ci = εijkajbk, (1.32)
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