Index

academic achievement: norms for, 95
accelerated math courses, 57–58, 59
access, 10, 130, 152–153; to formal education, 210; to good teaching, 22, 27–31, 153, 154; to science, 300
accountability: standards and, 193–194; in students, 298
achievement, 1, 9, 195; attitudes and persistence in, 258–276; gap, 10, 228–229; gender differences in, 213, 225, 227, 228, 233, 246; Hispanic students, 279–281; social and psychological predictors of, 245; teachers’ beliefs/expectations in, 137–138
achievement measures: problem of, 275
Adajian, Lisa B., 331
Adburgham, A., 210
addition, 102, 103, 104, 119, 120; problem types, 116; word problems, 105, 106
Adefula, L. O., 98
affective variables, 215, 242, 245
Africa, 181
Africa Counts (Zaslavsky), 46
African American Baseline Essays, 46
African American children/students, 45, 132–133, 338–339, 345; “athletic syndrome,” 261; and CGI, 103–122; cognitive-cultural mismatch, 24; cultural heritage of, 94; culturally relevant teaching for, 25–26; educational inequities, 199, 200, 201–203; and equal opportunity in science, 300; equitable mathematics education for, 202; gap between performance of whites and, 133; gender differences in mathematics achievement, 228; guidelines for successful teaching of, 3, 137–141; impact of public policy on, 192; learning styles, 95; mathematics achievement, 17, 258, 259–276; and multicultural education, 133–141; policy problem in mathematics education for, 195–198; and progressive pedagogies, 299; in QUASAR, 14; special educational needs of, 126; in UMTYMP, 79–80, 81
African American culture, 112–113
African American females: mathematics achievement, 263–264, 265, 266, 267, 268, 269, 273
African American feminists, 247
African American scholars, 129
African American studies, 46
African Americans: Jefferson’s beliefs about, 197; stereotypes about mathematics ability, 157
Afrocentricity, 131
Ahmes (Egyptian mathematician), 134
Alcoff, L., 254n1
algebra, 48, 229; and African American students, 134–136; in UMTYMP, 57, 63, 64, 77, 81, 82, 83, 85
alienation, 51n8, 290, 294
America 2000, 192–193, 194, 196–197, 198, 201, 203
American Association for the Advancement of Science, 298, 301
American Association of University Women, 93
American Dream, 183, 184, 185
American High School Mathematics Examination, 66
American Junior High School Mathematics Examination (AJHE), 265
American Regional Mathematics League (ARML), 66
Anderson, A. R., 158
Anderson, Bernice T., 93
Anderson, J. E., 94
Anderson, R. E., 195
Anderson, S. E., 203
Anick, C. M., 195
Ansell, Ellen, 99
anthropology, 308
Anton, K., 231
Amony, Jean, 167, 186n6, 7
Apple, Michael W., 4, 146, 191, 192, 197, 198, 200, 329–348
Appleby, J., 191
appropriation of constructs, 158, 159, 160
archetypes, 258, 264, 275–276
Arias, M. B., 1
Armstrong, J., 227
Asante, M. K., 131
Ascher, C., 196
Asia, 181
Asian American students, 81, 228
assessment, 4, 105, 106; CGI and, 121; and control of school knowledge, 200; criterion-referenced tests, 121, 192; and instructional practice in QUASAR, 12, 15; new, 195; see also National Mathematics Assessment
at-risk students, 20, 137–138, 343
Au, Kathryn, 130, 137, 281, 300
Australia, 213, 216
autonomous learning behaviors, 245
Bailey, P., 25
Baker, D. R., 235
Bakhin, M., 308–309, 312, 316
Bank Street College Project in Science and Mathematics, 46–47
banks, banking, 176–177
Banks, James A., 94, 126, 128
Bannaker, Benjamin, 46
basic science, 148
basic skills, 34, 48, 103, 105
Beane, J., 334
Becker, J., 215
behavioral approach, 340
Belenky, Mary, 253
Bell, D. A., 197
Belle, D., 186n3
Benavot, A., 201
Bennett, C., 226
Berlak, H., 192, 195
Bernstein, Basil, 333, 341–342
Bertilsson, K., 286
Best, S., 340
Biber, D., 296n2
bilingual education, 29, 39–40, 282
bilingual teachers, 3, 39–40, 280, 284, 289, 295
Bingham, C., 212–213
Birman, B. F., 17
Bishop, Alan J., 290
Bittenger, M. L., 187n15
Black Studies movement, 127, 132
Bloom, B. S., 142n6
Bly, Robert, 227
Boaeng, F., 104
Bob, M. L., 179
Boggs, J., 167
Borba, Marcelo C., 168
Bourdieu, Pierre, 156, 330
Bourque, M. L., 16
Bowles, S., 167

Index

Brady, E. H., 127
Brandon, P. R., 228
Braverman, H., 165
Brick, B., 196–197
Bright, George W., 45
Brom, T., 177
Brooklyn College, Women’s Center, 229
Brophy, Jere E., 105, 214
Brown, A., 307, 308
Brown, John Seeley, 307, 308
Bruce, Bertram C., 300
budgets, 171, 172–175
Burden-Patmore, D., 112
Burns, M., 42
Bush, George, 169, 179, 180, 192, 196, 197, 198
Bush, Neil, 178
Bush Foundation Intervention Program to Increase Female Participation (UMTYMP), 74–78, 79, 90, 91; goals in, 75, 77; results of, 84–88; retention rates, 85t, 86t
business and consumer mathematics, 165–166, 169–186
business and industry: needs of, as goals of educational system, 336, 337–338
Byrd, Lisa, 150
calculus, 228; in UMTYMP, 57–58, 64, 73, 78, 89–91
California Institute of Technology, 66
California State Department of Education, 20
Campbell, Patricia B., 2, 3, 4, 153, 225–241, 342
Campbell-Kibler, K., 235
Campione, J., 307, 308
Cannell, J. J., 17
capacity building, 201–203
capitalism, 177, 180–181, 183, 185
career choice: mathematics in, 227, 228, 231, 237
careers in mathematics and science, 93; women in, 227, 231
Carey, Deborah A., 2, 4, 93–125, 153, 331, 335, 345
Carpenter, Thomas P., 2, 17, 93–125, 132, 195, 213, 215, 234, 279, 331, 335, 345
Casey, Kathleen, 342
Castenada, A., 282
Caught in the Middle (California State Department of Education), 20
Cazden, Courtney, 130, 137, 280, 289
Celestial Mechanics (Somerville), 211
Central Park East School (New York City), 346
centralization, 333, 334, 336
Cervantes, R. A., 130
CGI; see Cognitively Guided Instruction (CGI)
Index

Chambers, Donald L., 16, 93, 195
Chapter 1, 17, 29, 104
Cheche Konnen Project, 4, 302–307, 309–322
Cheek, H. N., 95
children: and CGI, 103
Children’s Defense Fund, 133, 174
children's literature: African American culture in, 112–113
Chile, 181
Chipman, Susan F., 1, 152
“choice” proposals, 336
Christian-Smith, L., 330
Chronicle of Higher Education, 65, 66
Chunn, E. W., 130
Citizens Trust Bank (Atlanta), 175
civil rights movement, 127
Civil Rights Restoration Act, 228
Clark, Christopher M., 214
class, 165, 329; and gender differences in mathematics achievement, 228; and relations of power, 341–342; schooling and, 330–331; see also social class; socioeconomic status
class consciousness, 166–169; in curriculum, 169–186; in equity in mathematics education, 165–166; raised, 183–186
class issues: teaching about, 165–166
class reductionism, 341
class relations, 331, 335, 340, 341–342, 345
class sizes, 195, 199
class structure, 122, 165–166, 167–168, 169, 171, 174; consciousness of, 178
class struggle, 185
classroom(s), 153, 335; equitable, 122–123; equity inside, 209–224; instructional focus in, 139–140; research on, 213–221; restructured to reduce gender differences, 225, 233–237; role of persistence in, 270–272; treatment of women in, 242
classroom communities of scientific practice, 299, 312–313, 322–325
classroom discourse: and Hispanic students, 280
classroom interactions, 272; gender differences in, 226; research on, 217–221; see also teacher–student interactions
classroom practice: in science, 299, 300–302; and scientific practice, 321–325; teacher enculturation and, 309
Clewell, B. U., 93
Coalition of Essential Schools, 235
Cobb, Paul, 166
Cockburn, Alexander, 181
cognition, 23, 24, 308; culture and, 130, 137
cognition-based research, 147–148
cognitive-cultural interface, 23, 24–26
cognitive psychology, 1
cognitive science, 148, 308
cognitive science research paradigm, 96–97
cognitive styles, 95; feminine, 238; see also learning styles
Cognitively Guided Instruction (CGI), 2–3, 101–121, 153, 345; children and, 103; efficacy of, 121–122; research on, 102–103; teachers’ interpretations of, 116–118; in urban environment, 103–121
Cohen, Elizabeth G., 130, 159
Cohen, Patricia C., 201, 212, 249, 251
Cole, Michael, 281, 302
collaboration, 32–34; see also cooperative groups
college preparatory standard, 201, 202
College of Public and Community Service (Univ. of Massachusetts), 169–170
Collins, Allan, 307, 308
Collins, P. H., 148, 247
Comer, James, 130
Commission on the Skills of the American Workforce, 51n7
communication, 22, 32–34; importance of, 114–115; mathematics for, 151
communication processes: in learning mathematics, 290–294
communities of learners, 31–40, 48, 49
communities of practice, 302, 308; scientific sense-making, 312–313, 322
colleges: and students, 55–58
competence, 137–138, 249, 251
competencies: mandated, 336
competency-based approach, 340
computational algorithms, 102
computational skills instruction: minority students and, 157–158
concepts: expressing, 285–286; language use in teaching, 282, 284, 289; social construction of, 308
confidence and mathematics achievement, 259, 265–267, 272–273, 274–275; in women, 253
Congressional Budget Office, 17
Connell, R. W., 340, 342
conservative social/educational policy, 332–333, 335, 336–337, 342, 346
constructivism, 155, 221, 340
content, 122; of mathematics curriculum, 104, 105–112
content integration, 141; in multicultural education, 128–129
content knowledge, 116–117, 118, 119–121; of teachers, 140
context(s), 98, 122, 129, 134; gender differences in, 221–222; importance of, 132; lack of, in word problems, 105; of mathematics, 104, 112–113; in mathematics curriculum, 24–25; students’ prior knowledge in, 116–117; see also multicultural context(s)
Continental Illinois (bank), 176
contributions of minorities in curricula, 128
Cooney, Thomas J., 151
Cooper, H., 137
cooperaive groups, 32–34, 35, 153–154, 158–159; and cross-cultural communication, 154
cooperative learning, 18, 42, 76, 130, 236
Cornbleth, C. A., 147
Coser, Ruth, 236
Council of Great City Schools, 195–196, 199
counseling in UMTYMP, 73, 76, 77
Count on Your Fingers African Style (Zaslavsky), 130
counting, 97, 99, 100, 102, 109; finger, 130
Court, D., 342
Crano, W., 137
Cray Technology-Intensive Alternative Course (UMTYMP), 78, 82, 87
Crenshaw, K. W., 197, 200
critical (the), 346; the practical and, 335–339
critical dimensions for equity, 146–164
critical filter, 245
critical literacy, 343
critical pedagogy, 133
critical practice, 331
critique: in reform movement, 4; of science, 242, 243–253; systemic, 344–345
cross-cultural communication, 151, 153–154
Cuevas, Gilbert, 282
cultural artifacts: expropriation of, 158
cultural attitudes, 74
cultural authority, 330
cultural background: and mathematics achievement, 24–26
cultural diversity, 9, 14, 47, 50n5, 122; universals, and, 97–98
cultural heritage, 141; African American, 94; connecting mathematics to, 40, 45, 46–47; U.S., 203
cultural issues, 2–3, 4, 23–24, 42, 279
culturally relevant teaching, 133–141
culturally sensitive teaching, 153–154
culture, 330; and cognition, 130, 137; and mathematics, 132–133; and mathematics education, 98, 222
culture of mathematics, 59, 73, 77, 91
culture of power, 299
Cummins, J., 282
Cuniff, J., 188n22
curriculum(a), 4, 11, 48, 52n17, 147, 150, 330, 339, 345; advantage/disadvantage in, 131–132; assaults on, 336; business and consumer mathematics, 165–166, 167–168, 169–186; CGI, 118, 121; class consciousness in, 169–186; content integration in, 128; content of, 19–20, 104–112; and culture, 330–331; delivery and realization of, 214; diverse, for diverse groups, 93–96, 97; equitable models of, 346; from feminist standpoint, 253, 254; inclusive, 127; linked to real life, 337–338; in model of teacher development, 309–310; multicultural, 25–26, 141; national, 336; QUASAR, 12, 13; rationalization of, 333; in UMTYMP, 59; uniform, 96
curriculum development: equity-based, 344; gender-related work in, 249; in QUASAR, 12, 15
curriculum reform movements, 333
Dale, Roger, 341
Damian, Suzanne K., 2, 3, 4, 148, 153, 242–257, 339, 340, 341, 342
D’Ambrosio, Ubiratan, 203
Damen, L., 151
Davis, Robert B., 192
Defoe, D., 210
Delpit, Lisa D., 24, 51n9, 148, 152, 156, 298, 299
democracy: equity and, 345, 347
demographics, 1, 9, 10, 179; and multicultural education, 127–128
demonstration-based learning, 300
DeMott, B., 167
Department of Employment, Education and Training (Australia), 213
de-skilling, 332–335, 342, 345
detracking, 27–29
Deutsch, A., 19
Dewey, John, 337, 338
Diamond, I., 244
Diaz, S., 280
Dick, Thomas P., 227
discourse, 3, 154; of equity advocates, 160; impoverished, 154
discourse appropriation, 308–309; case study, 314–322; role of, 309–322
discourse patterns, 24, 299; expropriation of, 138
discourses of distance: and feminist standpoint, 250–253
distribution of goods and services, 203
diverse groups: diverse curricula for, 93–96; research on, 159
diversity, 118, 127, 147, 148, 149, 151, 152, 153, 154, 157; see also cultural diversity domination, relations of, 336
Domini, A. L., 177
Donald, Janet, 329, 330, 336
Dossey, John A., 16, 93, 103, 195, 228
Douglas Science Institute (DSI), 230–231, 237
Index

Drill-and-practice, 19–20
DuBois, W. E. B., 129
Duckworth, E., 312
Duguid, P., 307
Duhe, Sharon, 186n5
Duke, David, 186n5
Duranti, A., 321
Earle, P., 210
Early Alert Initiative, 82–84
Easley, J., 215, 270
Eccles, Jacquelynne, 226, 236, 245
ecofeminism, 244
economically disadvantaged (the), 9, 10–11, 16, 17, 50n5, 6; number of, 50n2; and QUASAR, 13, 14; in UMTYMP, 63, 78–82
Economics, 216, 334, 339, 341; and equity, 191–206
Edelman, M. W., 133
Edmonds, R. R., 21, 137
education, 140, 221–222; form of, 165; “girl problem” in, 227–239; historical overview, 210–212; liberatory, 170–171; male–female participation, 210, 212, 213, 216; as narrow practical activity, 337–338; and power, 330–332; and social conflict, 336; as socialization, 308; see also mathematics education
Education Development Center, 236
education of women, 209–210, 211–212
educational change, 333
educational discourse, 339
Educational Evaluation and Policy Analysis, 152
educational opportunity: equality of, 299; for females, 209–210, 211, 212, 222; for linguistic minority children, 298
educational policy/practice, 10, 191–192, 198, 203, 295; capacity building in, 201–203; relations of power in, 341–342; socially situated character of, 331–332, 335
educational policymakers, 191, 202, 203–204; ideology/political philosophy of, 196–197
educational reform, 11, 342–345
educational reform movement, 4, 141
educational research, 244, 245
educational system, 192, 194, 196; and girls’ participation in mathematics, 226–228; needs of business and industry goals of, 336, 337–338
Educational Testing Service (ETS), 226, 249
educational theory, 331
Effective Schools approach, 21
Eichler, M., 244, 245
Elementary and Secondary Education Act: Title I, 104; see also Chapter 1
Elementary School Journal, 152
Elitism, 65, 70–72, 330
Elmore, Richard F., 191, 194, 196, 202
Empiricism, 129; feminist, 242, 244–246, 254
employment opportunities: mathematics education and, 216; standards and examinations in, 195; see also career choice
Empowerment, 122, 233, 294, 333, 344
“enabling other,” 281
Enculturation, 290; of teachers into scientific sense-making practices, 307–309
England, 210–211
English language development, 282
enjoyment: and mathematics achievement, 259, 268, 272–273, 274
enrichment experiences: in UMTYMP, 75–78, 82–84
environment: with CGI, 114–116; supportive, 34–36, 39, 40, 73, 87–88
epistemological relativism, 340
epistemology, 339; feminist-standpoint, 242, 246–250
Epstein, Joyce L., 19
equal opportunity, 1; employment, 129–130; multicultural education and, 126, 127; in science, 300
equality: forms of, 200–201
EQUALS (program), 233
Equity, 3, 9, 130, 242, 245; blending research on, with research on children’s learning, 96–100, 122–123; classical notions of, 1–2; as component of research on reform, 148, 149–164; contemporary perspectives on, 212–213; critical dimension in, 160–161; in culture of mathematical excellence, 57–92; and democracy, 345, 347; differential standards of evidence, 155, 160; and economically disadvantaged students, 50n5; economics and, 191–206; and education, 332, 338; elaboration and fit, 150–153, 155, 160; and excellence, 141, 149, 201; in the future tense, 298–328; “girl problem” in, 225–229; and group-based differences, 147–148; inside the mathematics classroom, 209–224; intersection of multiple principles in, 154, 155; and mathematics education, 93–125, 165–190, 225–239, 329–348; and mathematics education reform, 9–56; and mathematics performance, 16–17; meaning of, 335–336; in present tense, 298; public policy and, 192; QUASAR and 47–49; 50n4; and reform, 150, 153, 155; rush for solutions, 149–150, 155, 160; in science, 301–302; social and critical dimensions for, 146–164; in UMTYMP, 70–74, 79, 84–88, 91, 92; see also fiscal equity; gender equity
equity-based analysis, 1, 2, 4–5, 161
“equity issue,” 149–155; cooperative groups as, 154
equity pedagogy, 128, 130, 141
“equity problem,” 149
Erickson, Frederick, 51n8, 130, 300
Ernest, Paul, 22–23, 243
Escalante, Jaime, 152
ethical investments, 177
Ethington, Corinna A., 245
ethnic groups/minorities, 10, 16, 93; in curricu-
ula, 94; see also minority children/stu-
dents
ethnic studies movement, 120
ethnicity: socially constructed dimensions
to, 159
ethnographic research, 346
EUREKA!, 229–230, 234–235
Eurocentric perspective, 131
Everybody Counts (National Research Coun-
cil), 9, 65, 72, 149
excellence: and equity, 57–92, 141, 149, 201;
and equity, in UMTYMP, 70–72, 91, 92
Expanding Your Horizons, 231
experience-based approaches, 52n17
expropriation of constructs, 156, 158–159,
160
externalist analysis, 331–332

Family Math (Stenmark, Thompson, and
Cossey), 236
family support: in UMTYMP, 59, 60, 73, 74,
76, 79, 88
Fausto-Sterling, A., 243
Feingold, A., 254–255n4
female mind-body, 252–253
female students: mathematics achievement,
258, 259, 261–262, 263–264, 265, 266–267,
268, 269, 273; teacher interaction with,
214–215
females, 10, 16, 93; majoring in mathematics
and physics, 66
females (UMTYMP), 58, 59, 62, 72, 73, 89–
91; in Bush Foundation Intervention Pro-
gram, 74–88; current majors of, 68–70,
68t; performance on qualifying examina-
tion, 85t
females’ participation in mathematics, 216,
217, 222, 225–229; causes and effects,
226–228; successful programs, 228–232
feminine cognitive style, 238
feminism, 249–250, 339, 340–341; and sci-
ence, 243–253
courses of distance and, 250–253; gender
and mathematics in, 242–257
feminist teaching, 153, 154
Fennema, Elizabeth,1, 2, 93–125, 132, 151,
215, 216, 226, 227, 233, 234, 235, 226, 237,
245, 251, 259, 267, 268, 331, 335, 345
Fennema–Sherman confidence scale, 265–
266, 268
Fey, James T., 18, 235
Feynman, R., 303
field dependent/independent learning, 95
Fillmore, L. W., 296n2
Fine, Michelle, 343, 344
finger counting, 130
fiscal equity, 195–196, 203, 204
Fitch, R., 180
Flanders, James R., 48
Flores, Penelope, 234
Flournoy, Valerie, 112–113
Fordham, Signitha, 51n8
Fox, L. H., 245
Frank, D., 186n5
Franke, Megan L., 2, 93–125, 151, 335
Frankenstei, Marilyn, 2, 3, 4, 131, 133,
148, 165–190, 203, 249, 331, 335, 337, 339,
340, 341, 347
Franzway, S., 342
Fraser, J. W., 334
Fratney Street School (Milwaukee), 346
Frederick, J., 232
Freedom National Bank, 176
Freire, Paulo, 170–171, 290
Fresh Voices, 229
Friedman, Lynn, 228
Frishy, M. K., 169
Frost, L., 226
funding, 51n6; for assessment, 195; responsi-
ibility for, 199; see also school finance
Gallimore, R., 281
games, 45, 46, 94
Gamoran, Adam, 1
Garcia, Eugene, 31, 39, 282
Gardner, Robert A., 16
Gardner, Howard, 33, 130
Garrett, D. G., 146
Garrison, H. H., 16
Gay, Geneva, 25, 95, 127
Gee, James P., 138, 300, 308, 309
Geertz, C., 308
gender, 1; and mathematics: feminist stand-
point, 242–257; race and, 258, 265, 266,
267, 269, 272–273, 275; socially con-
structed dimensions of, 159
gender differences, 96, 214, 215–216, 225–
229, 259; changing classroom structures to
reduce, 233–237; in context, 221–222; in
mathematics learning, 209–210; research

© Cambridge University Press
www.cambridge.org

Cambridge University Press
978-0-521-47720-8 - New Directions for Equity in Mathematics Education
Edited by Walter G. Secada, Elizabeth Fennema and Lisa Byrd Adajian
Index
More information
Index

gender differences (cont.) on, 238–239; teacher practice in, 232–233; see also sex differences
gender equity, 50n5, 210; programs that work, 229–232
gender-equity issues: research on, 216
gender issues, 3, 225
gender neutrality, 236–237
gender relations, 331, 335, 341, 342, 345
General Public Utilities, 177
Geometric Supposer, 236
geometry, 48; in UMTYMP, 57, 63, 77, 85, 90
Geometry, A High School Course (Lang and Murrow), 59
Gephart, Richard, 169
GESA (Gender Expectations/Student Achievement), 233
Gilbert, S. E., II, 95
Gill, David R., 168
Gintis, H., 167
“girl friendly” classrooms, 236
“girl problem in mathematics”: redefining, 225–241
girls: out-of-school programs for; 3; stereotypes about mathematics ability, 157; see also females
Girls Incorporated: Operation SMART, 231–232
Giroux, Henry A., 156
Gitlin, Andrew, 339
Goldenberg, Claude, 39
Gomez, Mary L., 127
Good, Thomas L., 105, 159, 214
Goodman, E., 227
Gore, D. A., 215
government, 191, 193, 199, 344
Gramsci, Antonio, 338
Grant, Carl A., 94, 127, 141, 151
Grant, Grace, 51n6
graphing calculators, 63–64, 79, 81
Graue, M. Elizabeth, 200
Greater Roxbury Neighborhood Authority, 175
Greenberg-Lakes Analysis Group, 226
Grieb, A., 215, 270
Griffin, Patricia, 302
Gross, Susan, 227
group differences, 147–148, 153–154, 155, 213, 216, 221, 276
grouping numbers, 106, 110, 112
groups: archetypes in, 258; study of, 158; voice in, 156
Grouws, Douglas A., 151, 158
Grover, Barbara W., 49, 50n4
Haberman, Martin, 105
Hale-Benson, J., 94, 95, 130

Haley, Margaret, 334, 342
Halliday, M. A. K., 282
Hammond, O. W., 228
Hammonds, E., 248
Handbook of Research on Mathematics Teaching and Learning (Grouws), 158
Haraway, D., 247, 248, 254n3
Harding, S., 244, 247, 248, 254n3
Harding, Vincent, 127, 128
Hare, B., 228
Hargreaves, Andrew, 338
Harraway, D., 339
Harris, L. J., 195
Hart, L. H., 215
Hart, Laurie E., 2, 3, 4, 258–276, 345
Hartsock, Nancy, 247
Harvard University, 66
Harvey, John G., 45
Harvey, William B., 133
“How Only Men Evolved?” (Hubbard), 243
Haynes, Norris, 130
Heath, Shirley B., 24, 151, 300
Herman, E., 169
Herschel, Caroline, 211
Hewitt, N. M., 227, 235
Hiebert, James, 97
high-level thinking/reasoning, 12, 21, 24, 31, 34
Hilliard, Asa, 46
Hispanic, children/students, 14, 17, 97–98, 157; issues of language and meanings in mathematics teaching with, 279–297; in UMTYMP, 80, 81
Hodgkinson, H. L., 50n5, 127
Hogan, D., 167
homework, 113; previewing, 234; in UMTYMP, 57, 59, 63, 78
Hopp, C., 226
Hubbard, Ruth, 243
Hughes, R., 129
Human, Piet, 98
Humphreys, S., 231
Hyde, Janet S., 226, 227, 228, 245
Hymer, S., 167
Hypatia (Greek mathematician), 142n1
hypotheses: students’ use of, 306–307
IBM, 177
identity, 325; of teachers, 309
ideology, 127; in discourse, 309; educational, 196–197; of the objective truth of science, 300–301
illiteracy, 210
Imani’s Gift at Kwanzaa (Burden-Patmon), 112
independence: persistence and, 269, 271, 272
individualized instruction: in CGI, 101, 102
individualized learning programs: in UMTYMP, 78
inequality(ies), 345; making, 279–297
inequity(ies), 130, 180–181; class, 165; curricula and, 96; in funding, 199; in math outcomes, 93; in status quo, 126; and underachievement of Hispanic students, 279
informal algorithms, 110–112
injustices, 171–172, 178; institutional structure and, 180–181
institutional change, 229, 232–239
institutional structures: and injustice, 180–181
instruct: for bilingual/language-minority students, 282; from feminist standpoint, 253–254; as focus in classroom, 139–140; improving, 52n17; improving, in QUASAR schools, 31, 40; and minority children, 280
instructional materials, 195, 199
instructional philosophy: in UMTYMP, 63
instructional practice, 10, 28, 249; changes in, 2, 6, 47, 48–49; language strategies in, 290–294; multiculturalism and, 23; and performance, 17; in QUASAR, 12, 13, 14; in special education, 29–31; storytelling in, 42–44; uniformity of, 214; using life experiences in, 41–42
instructional quality: as goal, 22; inadequacies of, 15, 18–21
instructional scaffolding, 138–139
instructional strategy: in model of teacher development, 309–310
instructions, experience of, 138
insurance, 171, 178–180
intergroup education movement, 127
internalist analysis, 331
interventions (UMTYMP), 58, 72, 73–74, 75–78, 82–83, 91, 93; preparticipation, 80, 82–84, 89
intuitive strategies, 97–99, 101
Iowa Test of Basic Skills (ITBS), 192, 265
Irigaray, Luce, 252–253
Irvine, Jacqueline, 195
Jackson, David Z., 169, 174
Jaggars, A. M., 245–246, 254n1
Jefferson, Thomas, 192, 196–197, 203–204
Jeffersonian compact, 192, 196–197, 200, 203
Jeffersonian view of equality, 200, 201
Jeffries, D. A., 187n13
Jenkins, L., 300
Johnson, Melissa, 195
Johnston, W. B., 51n7
Jones, D., 151
Jones, Karen, 338
Jones, Paula L., 218
Jordan, Cathie, 130, 137, 281
Jorde, D., 234
Kagan, N., 158
Kahle, Jane, 234
Kamens, David H., 201
Kane, Michael, 16
Karp, K., 233
Keller, Evelyn Fox, 243, 252
Kellner, D., 340
Kenway, Jane, 342
Keynes, Harvey B., 2, 4, 57–92, 335, 339
Khisty, Lena Lieeon, 2, 3, 4, 279–297, 331, 335, 343, 345
Kilpatrick, Jeremy, 31, 158, 159
Kinder, P. D., 177
King, Joyce, 127
Klein, R. D., 244
Knapp, Michael S., 21, 104, 105
Knoll, I., 174
Knorr-Cetina, K. D., 301, 303, 304
knowing: cognitivist model of, 147; social understanding of situatedness of, 343
knowledge, 104, 132; academic vs. popular, 332, 336, 337–338; definitions of, 339–340; expropriation of forms of, 158; in feminist–standpoint theory, 247, 248; and Hispanic students, 294; popular, 330; scientific, 301, 303, 306–307, 313; and social practice, 332; women’s relations to, 253
knowledge building: feminist standpoint in, 247; irony in, 250
knowledge construction, 11, 22, 48, 129–130, 141; in multicultural education, 128, 129–130
Koehler, Mary Schatz, 151, 215
Kolstad, Andrew, 227
Kozol, Jonathan, 51n6, 130, 165, 196, 200, 300, 330
Krashen, Stephen, 296n2
Kuhn, Thomas S., 129, 131, 243
labor, degradation of, 334
Lakes, M., 234
Lampert, Magdalene, 26, 31, 148, 151, 214, 307, 308
Lane, Suzanne, 50n4, 52n13
Lang, S., 59
Langer, J., 281
language: of educational reform, 343; and gender differences, 238; in mathematics, 3–4; in mathematics teaching with Hispanic students, 279–297; scientific, 300; socially constructed dimensions of, 159

Index
Index

language use: for mathematical ideas/mathe-
matics register, 282–283; in modeling, 281;
in teaching mathematics, 294
Laplace, Pierre, 211
Las Casas, Bartholomew de, 128
Latino students: cultural heritage, 46–47;
and instructional practice, 41–42; see also
Hispanic children/students
Latour, B., 301, 302, 303, 304
Lave, Jean, 168, 172, 187n16, 308, 309
Lawrence, C. R., 203
Lawson, J., 210
Lea, A., 234
Leap, William L., 23
learning, 218, 307, 308; blending research on
equity with research on, 96–100, 122–123;
cognitivist model of, 147; in creating class-
room communities of scientific sense-mak-
ing, 299; myths about, 147; organization of;
346; physical experience in, 252; to
question, 36–39; reflective practice in,
324; 332–333, research on, 11, 213–221;
role of social interaction in, 281; taking re-
ponsibility for, 119; talk in, 290; univers-
als in, 97–100
Learning and Research Development Center
(LRDC), 194
learning styles: and curricula, 93, 94–95; of
students in UMTYMP, 62, 64
Leder, Gilah C., 2, 3, 4, 50n5, 209–224, 259, 342
Leggett, E., 130, 137
Leinhardt, Gaea, 214
Leitzel, J. R., 249
Lemke, Jay, 300–301
Leonard, C., 46
Levine, G., 226
Levine, John M., 307
Lewis, D., 90
Lewis, Mary, 148, 156
liberatory education, 170–171
Lieberman, Ann, 12
life experiences of students: building on, 40–
42
limited-English proficient (LEP) students, 39;
151, 280–297; number of, 279
Lindquist, Mary M., 16, 17, 93, 103, 195, 279
linguistic minority classrooms, 298–328
linguistic referents, 4
linguistically diverse learners: building com-
munities of, 39–40
Linn, Marcia C., 227, 245
Literacies Institute, 312
literacy, 47–48, 146, 212; new forms of, 22
literacy research, 138
literacy canons, 129
Lockridge, K., 212
Lomotey, Kofi, 103
Longino, H. E., 248, 303, 304
Lopez, J. A., 187n11
lower socioeconomic status (SES) students,
150, 157; see also economically disadvan-
taged (the)
Lowe, R., 126
Lubinski, Cheryl A., 234
Lynch, M., 302, 303, 304
McAlister, M., 177
McCarthy, Cameron, 339, 341
McCaslin, M., 159
McClain, J. D., 186n1
McDill, E. L., 50n2
McDonald, J. P., 148, 156
McDonnell, Lorraine M., 191, 194, 196, 202
Macedo, Donald, 171
McGrath, P. L., 209
Macias, J., 137
McIntyre, R., 179
MacIver, D. J., 19
McLeod, Douglas B., 286
MacLeod, Janet, 167
McNeil, Linda, 338
mainstream culture, 23, 24
mainstream literacies, 299, 305–306, 324
mainstream practice: critique of, 298, 300–
302
male domain, mathematics as, 227, 229, 245,
250–252, 342
manipulatives, 120, 235–236, 252
Marable, M., 197
Marcuse, H., 188n23
Mare, Robert D., 1
marginalizing, 156, 159–160; in science edu-
cation, 301
Marriott, M., 52n15
Martel, E., 52n16
Marx, Karl, 168
Marxist epistemology, 247
Maryland Department of Education, 121
Massachusetts Coalition for Basic Human
Needs, 170
Massachusetts Institute of Technology
(MIT), 66
mastery: hard/soft forms of, 245
Math Science Network (Oakland, Calif.),
231
Mathematical Analysis: in UMTYMP, 57,
63, 77, 85, 90
mathematical disempowerment, 165–166,
167–169
mathematical ideas: language use in, 282–
283; recasting of, 284–285
mathematical knowledge, 170, 171, 253–254,
258
mathematical terms: recasting of, 284–285;
in Spanish and English, 282
Index

“Mathematical Tug of War, A” (Burns), 42–43
mathematics, 9: for communication, 151; content of, 104–112; context of, 104, 112–113; as crucial form of knowing, 335; equity in, 165–166; gender and: feminist standpoint, 242–257; gender-neutral, 236–237; making meaningful, in multicultural contexts, 126–145; maleness of, 250–253; multicultural education and, 131–133; nature of, 248; neutrality of, 147; patriarchal structuring of, 342; relevance of, 40–47; underrepresentation of girls and women in, 225–229; value of, 147, 172

mathematics education, 3, 11; access to high-quality, 27–31 (see also access); borrowing perspectives from other disciplines, 340–341; central concerns of, 159; changes in, 336–337; equity in and, 1, 93–125, 165–190, 209–224, 238–239, 329–349 (see also equity); expropriation of constructs in, 158–159; feminist standpoint, 248–250; functions of, 147; new goals for, 22–24; response to crisis in, 21–26; science of, 242; shopping in, 168, 172; social and critical dimensions for equity in, 146–164; in social context, 331–332

mathematics education reform, 2–3, 146, 195–196, 298, 301–302, 345–346; critical cautions regarding, 339–342; critique of, 160–161; curriculum in, 96; equity in, 95–96, 93; expropriation of constructs in, 158–159; goals in, 21–24; leadership in, 333; misfit in, 150; multicultural dimension of, 24–26; in QUASAR, 12, 47–49; quest for quick solutions in, 149–150, 155, 160; suburban control of, 199–200

mathematics education research, 1, 96, 147–148, 248

mathematics learning: universals in, 97–100
mathematics register, 3, 282–283, 284, 286–288; Spanish, 289

Matthews, W., 17, 103, 279, 294
Maxwell, Joseph, 168

meaning: appropriating systems of, 308–309; language use in negotiation of, 284

meanings: in mathematics teaching with Hispanic students, 279–297

Means, Barbara, 105
Medawar, P., 303–304, 318, 319
Mehan, Hugh, 300, 301, 308
Meier, D., 51n6
Mellin-Olsen, S., 23, 249
Mellon, P., 137
Merchant, C., 244
Merino, Barbara, 151
Mesa-Baines, A., 140
Metz, Mary H., 51n8
Metz, S. S., 237

Meyer, Margaret R., 3, 233, 298
Michaels, S., 300, 308

middle school: improving accessibility, quality, and relevance of, 26–47; mathematics education reform in, 9–56
Miller, Casey, 237

minority children/students, 9, 10, 17, 140, 294, 295; and CGI, 103–121; and computational skills debate, 157–158; and curriculum, 94; learning styles, 95; poor performance of, 279–280; progressive pedagogies and, 298–299; and science education, 300, 302; teachers of, 132; see also African American children/students; Hispanic children/students

minority educators, 51n9

minority groups: gender differences in mathematics achievement, 228

Mishel, Lawrence, 51n7
modeling, 109, 281, 283; with pictures and manipulatives, 120
modeling strategies, 97, 99, 100, 115
Mohatt, G., 300

Mohl, B., 179
Moll, Luis, 137, 280, 281
Montessori, Maria, 158
Montessori schools, 158
Moore, E., 279, 294
Mosier, J. M., 97

ibn Muhammad, Muhammad, 46
Mulkay, M., 301, 303, 304

Multilis, Ina V. S., 16, 17, 18, 20, 93, 195, 300

Mulryan, Catherine M., 159
multicultural context(s), 94; making mathematics meaningful in, 126–145
multicultural curricula, 93–96
multicultural education, 130, 141–142; and African American students, 133–141; elements of, 126–128; and mathematics, 131–133
multiculturalism, 23, 46–47, 96; and communication, 151; and mathematics education reform, 24–26; meaning of, 129–130
Murray, Harry, 98
Murrell, P. C., Jr., 51n8

Murrow, G., 59

music, 45

NAEP; see National Assessment of Educational Progress (NAEP)

National Assessment of Educational Progress (NAEP), 16, 17, 18–19, 20, 192–193, 195, 279
National Center for Education and the Economy (NCEE), 194
Index

National Center for Education Statistics, 1, 204n1, 279
National Center for Research in Mathematical Sciences Education (NCRMSE), 2
National Council of Teachers of Mathematics (NCTM), 2, 21, 26, 31, 79, 146, 147, 149, 151, 152, 187n8, 193, 195, 202, 203, 235, 280, 298, 301, 336; Standards, 60–61, 151
National Education Goals: No. 4, 228
national goals, 21
National Mathematics Assessment, 191–206; see also assessment
national mathematics standards, 141, 192–198
National Research Council, 2, 9, 65, 72, 149, 152, 187n8, 298, 301; Conference on Women in Science and Engineering, 229
National Science Board, 194, 195, 201, 227
National Science Foundation (NSF), 1, 84, 101, 227, 228; Young Scholars Program Early Alert Initiative, 75–76
National Science Teachers Association, 300
Native American children, 95; in UMTYMP, 80, 81
Natriello, Gary, 50n2
nature/nurture dichotomy, 248
“Naval Treaty” (Doyle), 329
Navarro, V., 187n14
Nelkin, D., 251
Nelson, Barbara Scott, 2, 9–56, 152, 331, 335, 345
neoconservatives, 197–198, 200, 204
neoliberals, 197–198, 200, 203
New Math movement, 146
New Standards Project (LRDC/NCEE), 194
New York City, 129, 130, 180
Newman, S. E., 308
Newton, B. J., 228
Nicholson, H. N., 232
Nicholson, L., 244
Nieto, Sonia, 151
Noble, Douglas, 165, 340
Noddings, Nel, 254–255n4
non-English proficient (NEP) students, 280–297
Notes on the State of Virginia (Jefferson), 197
null hypothesis, 246
number, 94, 100
number facts, 99–100
numeracy, 47–48, 210, 212
Nunes, Terezinha, 97
Oakes, Jeannie, 1, 18, 20, 28, 130, 152, 195, 201, 300, 301
observation (methodology), 214–215, 216, 222
Ochs, E., 318, 319, 321, 322
O’Connor, M. C., 300, 308
O’Day, Jennifer A., 193–194
Ogbu, John, 518, 94
Olivier, Alwyn, 98
Omi, M., 197, 341
Operation SMART, 231–232
opportunity: to take higher-level mathematics, 9, 195; see also educational opportunity; equal opportunity
Orr, E., 133
“othering of women,” 251
outcomes, mandated, 336
Owen, Eugene H., 16
Packer, A. E., 51n7
Paget, N. S., 218
Pallas, Aaron M., 50n2
Palmer, B., 341
parental involvement, 52n17, 77, 343–344
parents: of UMTYMP students, 70, 77, 80, 83
participation, 10; as goal, 21–22
participation rates, 15, 16–18, 27
Patchwork Quilt, The (Flourny), 112–113
pathology models, 279–280
patriarchal relations, 341, 342
Patterson, E. C., 211
pedagogical practice, effective, 140–141; see also instructional practice
Pelavin, S. H., 16
performance, 21; in basic skills, 26; as goal, 22; inadequacies in, 15, 16–18; in UMTYMP, 62, 75
performance-based accountability, 194
performance-based assessment: in CGI, 121
Perl, T., 211
persistence: distinct from independence, 269, 271, 272; and mathematics achievement, 268–269; role of, in mathematics classroom, 270–272, 275
personal belief systems, 93, 215
personal consumer finance, 171–180
Peru, 181
Peters, E., 197
Peterson, Penelope L., 1, 94, 101, 104, 214, 226, 236, 245
Phillips, S., 300
Phillips, A., 312
Phillips, Gary W., 16
physical experience: in mathematics learning, 252
Piedmont (Appalachia), 24
Pimm, David, 283
Pitman, Allan J., 146
place value, 47, 94, 100, 102, 103, 110
Plato, 209
policy problem(s): analytic and normative components of, 194–198
political (the) / politics, 249; racial, 197; in school mathematics, 168; of talk, 281, 290–294
political context: of equity, 148; of learning, 23
political objectives: in educational policy, 191–192
Polya, G., 150
poor communities: mathematics education in, 18, 20–21, 48; see also economically disadvantaged (the)
Popkewitz, Thomas S., 147, 156, 341
Porter, Andrew C., 18
postmodernism, 249–250, 341; feminist, 244, 250
postpositivist philosophers, 243
poststructural analysis, 1; appropriation of, to mathematics education, 340–341
Potter, E., 254n1
poverty, 50n5
Powell, A. B., 187n11
power, 329–48; analyses of, 341–342; differential, 332; education and, 330–332; relations of, 156, 341; in skills/process debate, 51n9; systematic, 344–345
Power Project, The (Girls Incorporated), 236
practical (the): and the critical, 335–339 prejudice reduction, 128, 141
Prince George's County, Md., 104, 105, 114, 121, 122
problem solving, 29, 38, 99–100, 135–136; in CGI, 101–102, 103, 104, 105–112, 114–115, 117, 118, 121; context for, 112–113; culturally linked approaches to, 23–24; emphasis on, in QUASAR, 13; instructional practice and, 17, 21, 22; intuitive strategies in, 97–99; mathematical disempowerment and, 168; storytelling and, 42–44; willingness to engage in, 118–119
problem-solving skills: building on, 40–42 problem-solving strategies 215
problem types, 116, 117
process-product research, 12, 105
process-product research paradigm, 214
Professional Standards of Teaching Mathematics (NCTM), 21–22, 51n9, 146–147, 149, 151, 152, 202–203
Progressive, 177
progressive pedagogies, 338; effect on minority children, 298–299
psychoanalytic theory, 247
psychology, 244, 331
public discourse, 147
public good (the): multicultural education and, 127
public policy, 192
Putnam, Ralph T., 214
Quality Education for Minorities in Mathematics, Sciences, and Engineering Network, 133
Quality Education for Minorities Project, 149
Quantitative Understanding: Amplifying Student Achievement on Reasoning (QUASAR), 2–3, 4, 9–56, 153; adaptation of, 11–12; Cognitive Assessment Instrument, 40; context and challenges, 15–26; design principles, 11–12; examples from, 26–47; goals of, 15; overview of, 10–15; School-Wide Projects, 29; sites and programs, 13–15
questions: assumptions underlying, 324; focus on, 234–235
Quinby, L., 244
race, 1, 203; and gender, 3, 258, 265, 266, 267, 269, 272–273, 275; and gender differences in mathematics achievement, 228; socially constructed dimensions of, 159 race differences: qualifying, 256–276
race relations, 331, 335, 341, 342, 345
racial inequalities, 200–201
racism, 133, 167, 169, 203; and redlining, 175
radical feminism, 247
Rallis, Sharon, 227
rationalization, 333
Ravitch, Diane, 131, 200, 201
Reagan, Ronald, 169, 176, 180, 184, 197, 198
Reaganomics, 169
real-world contexts, 23–24, 41
reasoning, 41; emphasis on, 13, 29, 153; higher-level, 12, 21, 24, 31, 34; instructional practice and, 17, 21, 22
recasting mathematical ideas and terms, 284–285
redlining, 175–176
reflective practice, 312, 313, 322–323, 324
reflexivity, double, 341
reform, 1–2; barriers to equity in, 3; beliefs/assumptions about, 148; equity and, 150, 153; equity as component of research on, 148, 149–164; see also educational reform; mathematics education reform
reform movements (1960s), 96 reform strategy: QUASAR, 12
Reich, Michele, 167, 169
relevance of mathematics, 10, 40–47
Renda, Mario, 178
Republic, The (Plato), 209
research, 213–221; beliefs/assumptions about, 148; on CGI, 102–103; critique of, 160–161; on equity and children’s learning, 96–100; feminist empiricist, 245; on gender differences, 238; mathematics edu-
Index

research (cont.)
cation, 1, 96, 147–148, 248; on reform, 148, 149–164; sexism in, 244; small-
sample, 216, 217–221; on student vari-
able, 215–216; on teacher behaviors, 214–215
research methodology, 216, 217, 222; gender
in, 246; language use in mathematics teach-
ing with Hispanic students, 283–284
Resnick, Lauren B., 4, 19, 22, 31, 307, 308
responsibility for learning, 118, 119
Reyes, L. H., 245, 259
Reynolds, David, 338
Rickover Summer Institutes, 66
Riddell, T., 181
Ringde School of Technical Arts, 346
risk taking: in UMTYMP, 59
Rist, R., 130
Robinson, Jack T., 127
Robitaille, David F., 16
Rodriguez, Richard, 161n1
Rogers, P., 216, 217
Rogoff, Barbara, 308
Romberg, Thomas A., 141, 146–147, 195, 213, 215
Rosebery, Ann S., 2, 3, 4, 158, 298–328, 335, 337, 343, 345
Roumagoux, D. V., 215
Roxbury Technical Assistance Project, 170
Royal Astronomical Society, 211
Rudolph, D., 318
Rudolph, W. B., 187n15
Rumberger, R. W., 1
Rutgers University, Douglass College, 230
Ryan, M., 226

Sacks, H., 322
Sartre, Jean-Paul, 166
Saxe, Geoffrey B., 97
“Scenes from the Inferno” (Cockburn), 181
Schaap, W. H., 188n24
Schegloff, E., 322
Schlesinger, B., 31
Schoenfeld, Alan H., 214, 307, 308
Schofield, R. S., 210
scholars: in equity groups, 159–160
scholarship, 1–2, 4–5; internalist/externalist
analyses, 331; see also research
school-based innovations, 11
school change, 346; “top down”/“bottom up
approaches, 12
school culture, 128, 141
school districts: material differences among, 165
school failure, 280
school finance, 199, 202–203, 339; see also
funding

school process: and Hispanic students, 294–
295
schools and schooling, 329, 330–1; assess-
ment of conflicting forces in, 342–343; and
class consciousness, 167; see also edu-
cation
science: beliefs about, 300–301; bias in,
245–246; as crucial form of knowing, 335;
equity in, 298–299, 301–302; feminist cri-
tique of, 242, 243–253; male bias in, 243,
244; sense-making perspective on, 302–
307; social construction of, 304
science education: critique of current prac-
tice in, 300–302; reforms in, 301–302
scientific discourse, 303
scientific method, 303
scientific practice, 302–303; and classroom
practice, 322–325; defined, 303; nature of,
303–304; values and ways of knowing asso-
ciated with, 307
scientific sense making: case study, 314–322
scientific sense-making communities: in
classroom, 322–325; teachers and, 310,
311–312
scientific sense-making practices: enculturat-
ing teachers into, 307–309
Scollon, R., 300, 309
Scollon, S., 300, 309
Scribner, S., 281
Secada, Walter G., 1–5, 9, 17, 24, 39, 46,
93, 95, 97–98, 146–164, 186n4, 187n8,
202, 259, 298, 299, 302, 331, 339, 343, 345
Second Voyage of the Mimi, The, 46–47
Selby, A. E., 187n13
self-confidence, 170, 226; in UMTYMP stu-
dents, 70, 73, 88; see also confidence
Sells, Lucy, 228, 245
Senk, S., 234
Sennet, R., 166
sense making, scientific, 3, 19, 38, 39, 299,
300, 302–307
sex differences, 242, 243, 245–246, 251,
272–273; qualifying, 258–276; see also gen-
der differences
sexism, 167; in research, 244
sexual division of labor, 342
Seymour, E., 227, 235
Shackelford, J., 181
Shan, S., 25
Shapiro, L. J., 19
Sharon, S., 139
Sherif, C. W., 243
Sherrell, R., 176, 178, 188n18
Sherman, J. A., 226, 235, 245, 259, 267, 268
Shields, P. M., 21, 104
Shulman, Judith, 140
Shulman, Lee, 140
Shure, P., 90
silencing, 156–158, 160
Silver, Edward A., 2, 4, 9–56, 103, 152, 279, 331, 335, 345
Silver, H., 210
Silverado Savings and Loan, 178
Silverstein, S., 44
Simon, R., 133
Simon, R. I., 148, 156
situated learning, 307–308
Sizemore, B. A., 21
skills deficiencies: in African American children, 299; remedying, in UMTYMP, 78
Slavin, Robert E., 18, 130, 159
Sleeter, Christine E., 94, 104, 127, 141, 151
slogan(s), 191–192, 196–197
“Smart” (Silverstein), 44
Smith, A., 279, 294
Smith, Adam, 193
Smith, C., 195
Smith, Gregory, 334
Smith, M., 137
Smith, Marshall S., 193–194
Smith, Margaret Schwan, 2, 9–56, 152
Smith, R., 318
Smith, Stephanie Z., 200
social (the): in educational reform, 331–332, 338, 340, 341, 342–343, 346, 347
social action approach, 128–129
social activities: in UMTYMP, 75–78
social artifact: school mathematics as, 147
social change, 126, 185; pedagogies of, 338
social change movement, 127
social class, 1; critical analysis of, 3; socially constructed dimensions of, 159; see also class
social constructivism, 243, 247–248, 308
social context, 23, 148; mathematics education in, 295, 331; of research, 147–148
social dimensions for equity in mathematics education, 146–164
social discourse, 339
social-historical context, 156–161
social inequalities, 346
social interaction: role of, in learning, 281
social processes, 156
social reconstructionist education, 141
social sciences, 243
social structure, 3, 128, 141, 331–332
social theory, 336
socialization, education as, 308
socially shared cognition, 307–308
society: assessment of conflicting forces in, 342–343; myths about, 147
sociocultural view, 308
socioeconomic status, 93, 104, 167
sociohistorical psychologists, 281
Soldier, L. L., 95
solution strategies; see problem solving Somers, K. B., 175
Somervile, Mary, 211
Sorel, Edward, 182
Sotheby’s, 178–179
Spanish (language), 39–40, 288–289
Spanish-speaking students, 280, 282–297; number of, 279
Spanish-speaking teachers, 3
Spanos, G., 284–285
special education, 29–31, 130
Spindler, G., 141
Spivak, G. C., 247
Spradley, J., 134
Squire, C., 244, 245
staff development, 4, 11, 21, 233; in QUASAR, 12, 15
Stallings, Jane, 226
Stamos, S., 181
standardization, 333, 334
standardized tests, 17, 192
standards, 345; national, 141, 192–198; with national assessment policy, 200, 201; school finance and, 202–203; in UMTYMP, 72; voluntary, 339
Stanford University, 66, 129
Stanic, George M. A., 2, 3, 4, 159, 245, 258–276, 345
Stanley, Julian C., 226
statistical data, 168, 169, 170, 171
Stedman, Larry, 137
Steele, Emelie, 186n3
Stein, Mary Kay, 50n4
Stenmark, J. K., 236
Stiff, Lee V., 133
Stuible, J. C., 218
Stodolsky, Susan S., 18, 214
stories: African American culture in, 112–113
storytelling, 42–44; scientific practice as, 303, 304, 318–319, 321
Strickland, D. S., 196
Strom, A., 177
structural relations, 341
student characteristics: for UMTYMP, 62–63
student variables, 215–216
students: as creators of knowledge, 129; relating mathematics to interests of, 40, 42–45; research on ideas and intuitive learning strategies of, 213; role of, in CGI, 104, 118–119; treated as competent, 137–138; see also talented students; teacher–student interactions
students of color, 127; lack of access and equity, 130; and multicultural education, 131, 132; in UMTYMP, 58, 62, 72, 73, 74, 78–84; see also African American children/students
study groups: UMTYMP, 76, 77
study habits, 78
Index

study skills workshop: UMTYMP, 76
subtraction, 102, 103, 104, 119, 120; problem types, 116; word problems, 105, 106
suburban districts: control of mathematics reform movement, 199–200
success in mathematics, 131, 132, 141
summer institutes, 66; UMTYMP, 82, 83–84
support system(s): UMTYMP, 59
Swift, Kate, 237
Sydney, W. C., 211
symbols: learning, 100

Taba, Hilda, 127
Tabachnick, B. Robert, 127
Tabor, M. E., 211
talented students: programs for, 65–66, 72–73; psychological and emotional needs of, 88
talk, 295; classroom science, 300; politics of, 281, 290–294; and scientific sense making, 318
Tartre, Lindsay A., 227
tasks (mathematics), 33–34, 35, 48
Tate, William F., 2, 3, 4, 142n3, 156, 191–206, 399, 341, 345
tax policy, 198–199
tax system, 169, 174, 179, 180, 183
taxes, 171, 178–180; for schools, 195–196
Taylor, C., 318
teacher awareness, increasing, 232–233
teacher behaviors, 214–215
teacher development, 333; discourse appropriation as basis of, 309–322; model of, 309–310; see also staff development
teacher discourse: with Hispanic students, 284–289, 290, 295
teacher expectations: impact of, on achievement, 137
teacher–student relations, 140–141
teacher support, ongoing: in QUASAR, 11, 12, 15, 21
teachers, 4; as agents of change, 280; attributions of success, 253; bilingual, 3, 39–40, 280, 284, 289, 295; black, 24; in CGI, 102–103, 104, 106–108, 109–110, 113, 114–118, 123; characteristics of successful, 3, 52n10; cognitive processes of, 214; countering de-skilling of, 332–335; and cultural diversity, 47; discourse characteristics of, 280; effective, 140–141; enculturating into scientific sense-making practice, 307–309; as facilitators of learning, 64; and gender differences, 238; and gender neutrality, 236–237; and girl problem, 342; of Hispanic students, 283–284, 295; individual differences among, 49; interpretations of CGI, 116–118; lacking mathematics training, 26; as learner/practitioner/researcher, 312; of LEP students, 279; mathematics qualifications, 195, 199; in QUASAR, 14; skills of, 345; Spanish learned by, 289; successful in teaching African Americans, 25–26; and talk in classrooms, 291–294; in UMTYMP, 62–63, 70
teaching, 4, 294, 295, 344, 345; culturally relevant, 133–141, 153–154; equitable models of, 344, 346; feminist, 153; with Hispanic students, 279–297; mechanics of, 214; real-life forms of, 338–391, reflective practice in, 322–323, 324; reform of, 151–153; successful, with African American students, 137–141; values and ways of knowing associated with scientific practice and, 307
teaching assistants (TAs): in UMTYMP, 76, 77
teaching strategies/methods: linked to everyday life, 337–338; in UMTYMP, 63, 81–82
teaching style: and mathematics achievement, 259–264
Teasley, Stephanie, D., 307
technology, 199; in UMTYMP, 63–64, 79
Teixeira, Rury A., 51n7
testing: national, 336; sex bias in, 245
textbook use, 105–106, 300; and CGI, 113; in UMTYMP, 59
Tharp, R., 281
Thatcher, Margaret, 336
time building, 322
thinking, 22, 103; assessment of, 102; content knowledge and, 120; higher-level, 12, 21, 24, 31, 34; mathematical, 34–36, 105, 121; power of, 118, 121; research-based knowledge about, 101–102, 104; scientific, 306–307; see also reasoning
Third World, 181
Third World women, 247
Thomas, V. G., 1, 152
Thompson, Alba G., 151
Thompson, V., 236
Thorne, J., 227
Thorne, Marilyn E., 93
Tiedemann, J., 95
Tikunoff, Williams, 282
Tilly, C., 167
Title IX, 228
Tobias, Sheila, 73, 218, 245, 249
Tomlinson, Tommy M., 149
Torres-Guzman, Maria, 129, 137
tracking, 1, 20, 28–29, 30, 130
transformative approach, 128
Trueba, Henry, 156
truth: challenge to, 243; of science, 300–301
Tuana, N., 254n3
Turkle, S., 245
Turnbull, Brenda, J., 21, 104

UMTYMP, see University of Minnesota Talented Youth Mathematics Program (UMTYMP)
understanding, 29, 36–39, 97, 98, 122; importance of context to, 132
United States: literacy in, 212
United States Bureau of the Census, 210
United States Department of Education, 196, 201, 228, 279
United States Department of Energy: PREP program, 75–76
United States Secretary of Education, 129
universals: in children’s learning, 96–100
University of Michigan: Department of Mathematics, 90
University of Minnesota, 58, 66–68, 89;
School of Mathematics, 57
University of Minnesota Talented Youth Mathematics Program (UMTYMP), 2–3, 57–92; challenges of educating students in, 62–64; College Night, 77; current colleges/universities, 66, 69; current majors of females, 68; current majors of males, 67, 70; data base, 65; degrees obtained, 71; equity in, 70–74; future directions, 89–91; Geometry Center, 84; goals, design, content, 59–61; grade distributions, 87; influence and outcomes of, 64–70; job profiles, 70, 72; Learning Styles Workshop, 77; Mathematics Fun Fair, 77; “perks” in, 60; preparticipation intervention activities, 82–84; Qualification Examination, 62; statement of commitment, 91–92
urban schools, 333, 339; African American students in, 192, 195; CGI in, 103–122; educational inequities in, 199, 206, 201–203; fiscal equity for, 195–196; teachers’ beliefs about students in, 137–138
Useem, E. C., 201
usefulness: and mathematics achievement, 259, 267–268, 272–273, 274
Usiskin, Z., 234
Ute (tribe), 23–24

Valadez, Concepcion, 296n2
value system(s), traditional, 95
Van Gogh, Vincent, 178
Verstegen, Deborah, A., 199
vocational education, 337–338
voice, 156–157
Volman, Monique, 238, 239n1
Vygotsky, Lev S., 281, 283, 308, 343

Walkerdine, Valerie, 253
Wallace, William, 212
Wari (Mancala) (game), 45, 46
Warren, Beth, 2, 3, 4, 158, 298–328, 335, 337, 343, 345
Warren, D., 342
Water Taste Test, 304–307
wealth, 172–174, 183, 184
Webb, Noreen M., 18
Weedon, C., 244
Weis, Lois, 165, 167
Weisbeck, L., 99
Weisstein, N., 243
Welch, W. W., 195
welfare, 172–174, 176, 180
Wenger, E., 308
Wertsch, James, V., 281, 317
Western Civilization: literary canons of, 129
Western tradition, 131, 132
Wheeler, M. M., 45
Where the Sidewalk Ends (Silverstein), 44
Who’s Who Among American High School Students, 66
Whyte, J., 233
Williamson, Judith, 338
Willis, M. G., 52n15
Willis, Sue, 253
Winant, H., 197, 341
Winfield, Linda, 137–138
Wittgenstein, Ludwig, 335
Wittrock, Merlin C., 215, 296n2
women: in curricula, 94; education of, 209–210, 211–212; experience of mathematics, 250; status of, 203; see also females
Women’s Studies, 243
“Women’s Ways of Knowing” (Belenky), 253
Wonnacott, P., 198–199
Wonnacott, R., 198–199
Woo, M. N., 198
Woodson, Carter G., 126, 129, 133
Woolgar, S., 301, 302, 303, 304
word problems (CGI), 105–108, 113, 114
words: in scientific sense making, 316–317
work habits, 59
working class: and racism, 169
working-class consciousness, 165, 166–167

Zaslavsky, Claudia, 45, 46, 130
Zeichner, Kenneth M., 148, 151
Zinn, Howard, 167
Zuckoff, M., 176

© Cambridge University Press
www.cambridge.org