This book summarizes the present state of knowledge on the microscopic behaviour of oxide surfaces.

The first chapter of the book summarizes classical approaches, introduces the concept of ionicity, and describes the mixed ionic-covalent character of the oxygen cation bond in bulk materials. The next three chapters focus on the characteristics of the atomic structure (relaxation, rumpling and reconstruction effects), the electronic structure (band width, gap width, etc.) and the excitations of clean surfaces. Metal-oxide interfaces are considered in the fifth chapter with special emphasis on the microscopic interfacial interactions responsible for adhesion. The last chapter develops the concepts underlying acid-base reactions on oxide surfaces, which are used in catalysis, in adhesion science, and in colloid physics, and discusses their applicability to the adsorption of hydroxyl groups. A comprehensive list of references is included.

This book will be of interest to graduate students or researchers, to experimentalists and theorists in solid state physics, chemistry and physical chemistry.
Physics and Chemistry at Oxide Surfaces
PHYSICS AND CHEMISTRY AT OXIDE SURFACES

Claudine Noguera

Laboratoire de Physique des Solides, Orsay, FRANCE
Nuestras horas son minutos
Cuando esperamos saber,
Y siglos cuando sabemos
Lo que se puede aprender.

Antonio Machado
Proverbios y Cantares
(Campos de Castilla)

Hours are minutes
When we hope to know,
And centuries when we know
What can be learned.
Contents

Preface xiii

1 Introduction 1
1.1 Classical models of cohesion 1
 The hard-sphere model 1
 Born's model and later developments 6
 Applications of the atomistic models 8
1.2 Origin of the insulating state 9
 Charge transfer oxides; correlated oxides 9
 Sawatzky–Zaanen’s diagram and discussion 11
1.3 Ionicity of a chemical bond 13
 Thermo-chemical description 13
 Spectroscopic description 14
 The hetero-polar diatomic molecule (non-self-consistent treatment) 15
1.4 Bulk electronic structure of simple oxides 17
 Experimental techniques 17
 Theoretical techniques for electronic structure determination 19
 The alternating lattice model 24
 Band limits and band widths 28
 The gap width 33
 Ionic charges 34
 Cohesion energy 38
1.5 Conclusion 41

2 Atomic structure of surfaces 42
2.1 Preliminary remarks 42
 Notations 42
 Classification of surfaces 43
 Surface terminations 44
Contents

Criteria for surface stability 45
Structural distortions 45

2.2 Experimental and numerical studies 47
 Rocksalt surfaces 47
 Rutile surfaces 48
 Perovskite surfaces 48
 Corundum surfaces 49
 Wurtzite surfaces 49
 \(\alpha \)-quartz surfaces 49
 Steps and kinks on oxide surfaces 50
 Numerical studies 50

2.3 Relaxations 51
 Electrostatic mechanism 52
 Covalent mechanism 54
 Relaxation mechanism in mixed ionic-covalent systems 56

2.4 Rumpling 59
 Electrostatic mechanism 59
 Covalent mechanisms 63

2.5 Non-stoichiometric reconstructions 65
2.6 Conclusion 67

3 Electronic structure of surfaces 68
3.1 Experimental and theoretical studies 68
 Experimental studies 68
 Theoretical studies 70

3.2 Electronic structure of non-polar surfaces 71
 Madelung potentials and gaps 71
 Surface density of states 76
 Surface charges 78
 Electronic characteristics of thin films 84
 Surface energies 86
 Consequences of structural distortions on the electronic structure 88

3.3 Polar surfaces 91
 Polar and weakly polar surfaces 91
 Electrostatic arguments 92
 Electronic structure 95
 Synthesis 99

3.4 Non-stoichiometric surfaces 99
 Characteristics of the electronic structure 100
 Discussion 102

3.5 Conclusion 104
Contents

4 Surface excitations 106

4.1 Surface phonons 106
- Experimental and theoretical approaches 106
- Classification of the surface modes 107
- Rayleigh mode 109
- Fuchs and Kliever modes 110
- Microscopic modes 111
- Soft phonons; reconstructions; structural phase transitions 112

4.2 Bulk electronic excitations 113
- General features 113
- Static $\omega = 0$ and macroscopic $q \to 0$ limits 114
- Static limit $\omega = 0$; spatial dependence of screening processes 115
- Dynamic screening $\omega \neq 0$; macroscopic limit $q \to 0$ 116
- Local field effects 118

4.3 Surface dielectric constant 122
- Classical macroscopic limit 122
- A better account of the surface electronic structure 124

4.4 Conclusion 127

5 Metal–oxide interfaces 128

5.1 Introduction 128

5.2 First stages of deposition 131
- Atomic structure at the interface 132
- Metal electronic parameters 136
- Oxide stoichiometry 137
- Examples of interfacial compound formation 137

5.3 Wetting and adhesion 138
- General remarks 138
- Non-reactive interfaces 140
- Reactive interfaces 142

5.4 Theoretical analysis of the first stages of deposition 143
- Electronic structure of supported clusters 144
- Electronic structure of epitaxial monolayers 144
- Growth mode modelling 145

5.5 Description of a jellium–oxide interface 146
- The model 146
- Metal-induced gap states (MIGS) 147
- Charge transfer 147
- The Schottky barrier height 150

5.6 Interfacial energy 153
- Short-range repulsion energy 154
- Kinetic energy 154
- Electrostatic energy 155
Contents

Exchange and correlation energy 157

5.7 Conclusion 159

6 Acid–base properties 160
6.1 Historical background 160
6.2 The acid–base concept in adhesion science 166
6.3 The acid–base concept in heterogeneous catalysis 170
6.4 Qualitative discussion 172
 Cation formal charge and ionic radius 173
 Cation electronegativity and oxygen charge 176
 First discussion of these parameters 178
 Mixed oxides 179
6.5 Hydroxyl groups on oxide surfaces 181
 Experimental results 181
 Theoretical results 183
 Charge transfers 185
 Density of states 190
 Adsorption energies 193
 Structural characteristics of hydroxyl groups 196
 Synthesis 200
6.6 Conclusion 201

References 202

Index 221
Preface

Although oxides have been the subject of active research for many years, they have attracted an increasing interest in the last decade. One reason for this interest is the discovery of superconductivity in copper oxide based materials, in 1986, with critical temperatures higher than the temperature of liquid nitrogen. Simple oxides have also been more thoroughly studied and a detailed analysis of their surface properties has been undertaken, thanks to several technological advances made during this period. The success in compensating charging effects, for example, has allowed spectroscopic measurements to be performed. Photoemission, x-ray absorption, Auger spectroscopy and low-energy electron diffraction now yield quantitative information, as they do for semi-conductors and metals. Topographic images of insulating surfaces can be recorded with an atomic force microscope. On the theoretical side, advanced numerical codes have been developed, which solve the electronic structure, optimize the geometry, and start accounting for dynamical effects in an \textit{ab initio} way. The results presently available allow a first synthesis of the field.

The interest and the richness of the field of oxide surfaces lies in its inter-disciplinary nature and in the diversity of questions it raises, both on a fundamental and on an applied level. For example, geophysicists and geologists consider in detail the surface properties and porosity of the rocks of our earth, made of complex oxides whose properties are, to a large extent, controlled by the grain boundaries and internal surfaces. The mineral reactivity also interests the toxicologists, who try to understand the interactions between small particles and the biological medium. Small oxide particles may be found in colloidal suspensions, and the surface reactions, which take place at the interface with the solution, determine in a large part the nature and strength of the particle–particle interactions and thus the stability of the suspension. Oxides are also good catalysts, which are largely used, for example, in petrochemistry. Specific experimental
techniques have been developed to quantify the acidity or basicity of their surface sites and to establish a correlation between their catalytic activity and their surface geometry. In the multi-layered materials produced in modern industry, oxides are often used as supports for thin metallic films or grafted polymeric layers, as intercalation layers in electronic devices, etc. They are often present, although in an uncontrolled way, whenever a material is in contact with the ambient atmosphere. They play a fundamental role in corrosion processes and the surface properties of real materials, such as the friction coefficient, etc., are in fine determined by them. Finally, they offer a large field of investigations to surface physicists, who have developed concepts and obtained many results on metals and semi-conductor surfaces, but who are still trying to answer elementary questions on oxide surface characteristics – e.g. density of states, gap width, stoichiometry of the outer layers, reconstructions, defects.

In this vast context, the present book is restricted to well-defined themes, which have been the subject of recent developments and for which a microscopic understanding is emerging. The oxides which will be discussed are ‘simple’ insulating oxides, with cations from the four first columns of the periodic table or from one of the transition series, provided that they are in a closed-shell configuration – such as TiO$_2$. Those oxides whose insulating character results from strong electron correlations will be discarded. Their bulk electronic structure remains a challenge for the theoreticians and little information on their surfaces is known. For a long time, all ‘simple’ insulating oxides were believed to be highly ionic, and were described by classical electrostatic models. More recently, electronic structure calculations have proved that most oxides are only partially ionic, but the relative weight of covalent and electrostatic interactions in these materials remains a subject of controversy. The first chapter of this book summarizes the classical approaches, makes a presentation of the concept of ionicity and proposes a quantum model, which accounts for the mixed ionic–covalent character of the oxygen–cation bonds in the bulk. The three following chapters focus on the atomic structure – relaxation, rumpling and reconstruction effects; the electronic structure – band width, gap width, etc.; and the excitations of clean surfaces. Interfaces between a metal and an oxide are considered in the fifth chapter, with a special stress put on the microscopic interfacial interactions responsible for adhesion. Although the relevance of some parameters to wetting and growth processes is indicated, all the kinetic aspects – growth of a metallic deposit on an oxide or superficial oxidation of a metal – are excluded. The last chapter develops the concepts underlying acid–base reactions, which are used in catalysis, in adhesion science and in colloid physics. It points out their relevance to chemisorption processes, and more specifically to the adsorption of hydroxyl groups on oxide surfaces.
Preface

The aim of this book is to draw a panorama of the field, to ask questions, to indicate tracks for future research, rather than to present a final picture, which has still to be built up. Due to the connections with many disciplinary fields, it has not been possible to make an exhaustive bibliography. Many review papers or books are quoted, in which the reader will be able to trace the original papers. For the sake of synthesis and pedagogy, systematic features are stressed, relevant parameters are derived and a comparison is made between the concepts used in 'this' or 'that' research area. Theoretical models are proposed to synthesize the experimental or numerical results obtained on given systems and to obtain a consistent picture. Although they can only account for the gross features and the trends, they do represent an advance on the long way of the conceptualization of knowledge. The analytical support is highly inhomogeneous: some questions are developed at length; others are sketched only quickly and will leave the reader unsatisfied. It is the sign that much work remains to be done.

The French version of this book was written after a series of lectures given in 1992–3, in Orsay, to undergraduate students in solid state physics. The audience contained students preparing their theses, as well as researchers: solid state physicists, geophysicists, electrochemists and chemists, experimentalists or theoreticians. A special effort was thus made to settle the background necessary to a complete understanding, without assuming any advanced knowledge. I am deeply indebted to all the participants who encouraged me with their attendance and helped me with their questions. Many thanks are also due to my own PhD students who have shared my queries during the last years.

The final version of this book benefited greatly from discussions, comments and encouragements from some of my colleagues. Among them, I am especially grateful to J. Friedel, J. Jupille, S. and A. Chopin, P. Dubost, E. Ilisca, J. P. Pouget, J. P. Roux, A. Auroux and J. Schultz, who read part or the whole of the French draft, D. W. Jepsen who kindly read and corrected the English version, and C. Godrèche and P. Manneville whose help was invaluable in disentangling the subtleties of TEX formatting.

C. Noguera
Orsay, France