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CHAPTER I 

Chaotic dynamics in overlapping 
generations models with production 

Alfredo Media and Giorgio Negroni 

1 Introduction 

Over the past decade there has been an increasing interest in the possibility of 
cyclical and chaotic behavior in perfectly competitive economies. Particular 
attention has been given to the overlapping generations (OLG) models, with or 
without production [see, e.g., the contributions of Benhabib and Day (1982), 
Grandmont (1985), Reichlin (1986), Benhabib and Laroque (1988) and Jullien 
(1988)]. 

In this paper we are concerned with the possibility of chaotic dynamics in 
a two-periods OLG model with production. To the best of our knowledge, in 
this class of models complex behavior has been found only in the case of back
ward perfect foresight' (see e.g., Medio (1992) for the case of a nonmonetary 
economic with a Leontief technology, and J ullien (1988) for the case of a mon
etary economy with a production technology that allows for some substitution 
between factors). 

As Woodford (1990) pointed out, this is a rather disturbing occurrence but, 
as we prove here, it is by no means the only possibility. In fact, in Medio's 
model, economic agents only work when young and consume only when old, 
whereas Jullien assumes an exogenously given labor supply. Ifwe modify these 
restrictive assumptions by endogenizing labor-supply decisions and allowing 
agents to consume also when young, then it is not too hard to overcome the 
difficulty and to prove the existence of chaotic forward dynamics. As we show 
in Section 2, the possibility of defining forward dynamics crucially depends on 
the choice of the utility function for consumption in the second period, whereas 
the occurrence of complex dynamics also depends on the interaction of the 
utility function for consumption in the first period and the production function. 

I See Benhabib and Day (1982) for the possibility of chaotic dynamics with forward perfect 
foresight in a pure consumption economy. 
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4 Alfredo Medio and Giorgio Negroni 

We consider two classes of utility functions for the first period, labeled CARA 
and CRRA.2 Forward dynamics requires that utility function for the second 
period be always of the CRRA type. 

We also consider the two classes of technologies: the linear Leontief and 
the CES. Combining the technologies and the first-period utility functions, 
we get four kinds of economies, which we label CARAL(Leontief), CR
RAL(Leontief), CARACES, and CRRACES. We prove that each of them 
admits some combinations of parameters that generate cyclical or chaotic 
evolutions. 

The paper is organized as follows: in Section 2, we discuss the origin of 
backward perfect foresight in OLG models with production of the traditional 
type. In Section 3, we introduce our model of intertemporal choice, and in 
Section 4, we consider the production side of the model in the case of a Leontief 
technology. In Sections 5 and 6, we present our results, respectively, for CRRAL 
and CARAL economies. In Section 7, we introduce a CES technology; in 
Sections 8 and 9, respectively, we analyze the CRRACES and the CARACES 
economies. We present analytical results whenever it is possible and numerical 
simulations of the more interesting occurrences. Some economic explanations 
of complex dynamics are left to Section 10. 

2 Backward and forward dynamics: Some preliminary 
results 

In the simpler and most common variation of the OLG model, agents live for 
two period: they work when young and consume when old. Let W t and Rt+1 
be, respectively, the real wage rate and the real interest rate; also let U(Ct+I) and 
V (It ) denote the utility of consumption in the second period and the disutility 
of labor in the first period, respectively. The problem faced by the young 
(representative) agent at the beginning of period t is thus to choose Ct+1 and 
It that maximize [u(Ct+d - v(lt)] subject to the constraints: kt = wtlt and 
Ct+1 = Rt+1kt . 

In this case, from the first-order conditions we get 

Note, that the first-order conditions may be written as Ct+1 U' (ct+d -It Vi (It) = 
o from which, putting U(Ct+l) = ct+lu'(ct+d and V(lt) = ltv'(lt), we obtain 
U(ct+d - V (It ) = O. Now, this equation implicitly defines forward perfect 

2 CRRA stands for constant relative risk aversion and has the general functional for u(e) = 
a-le",O < 0' < I; CAR A stands for constant absolute risk aversion and has the form u(e) = 
-re-c , r > O. 
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Overlapping generations models 5 

foresight dynamics if U is invertible. If we denote the relative degrees of risk 
aversion pertaining to the consumption and labor-supply functions by P2 = 
-Ct+lUI/(Ct+l)/U'(CHl) > 0, and PI = ltvl/(lt)/v'(lt) > ° respectively, we see 
that becauseU'(cHd = u'[1 - P2] and V'(lt) = v'[1 + PI],U is invertible if 
the sign of I - P2 does not change. This condition, in tum, implies that saving 
is a monotonic function of the real interest rate.3 

Reichlin (1986) assumed precisely this condition, and showed that, in the 
case of a Leontief technology, for P2 < I the stationary state loses its stability 
through a Neimark4 bifurcation when b ~ 2, where b represents the output
capital ratio. On the other hand, Reichlin also showed that, with a production 
technology with variable proportions, a Neimark bifurcation is possible, pro
vided that the elasticity substitution between capital and labor at the steady state 
is less that the share of capital income. 

Medio (1992) used the same framework as Reichlin to prove the existence 
of backward perfect-foresight chaotic dynamics, for the case of a Leontief 
technology. The author here assumed a utility function of the CARA type for 
second-period consumption, and a disutility function of the CRRA type for 
current labor supply. 

3 Forward dynamics: The basic model 

Let us consider an economy composed of two overlapping generations. The 
members of each generation live for two periods (youth and old age) and work 
only when young, but consume in both periods of life. To simplify the analysis, 
we consider a real economy in which there is only one commodity (e.g., com) 
that can be consumed or used in the production process. 

Let us assume that the overall utility function is time separable. The utility 
derived from consumption in the first and second period, and the disutility of 
labor in the first period, are denoted by u I (ct ), U2(Ct+l), and v(lt), respectively. 
We further assume thatthe functions Ul, U2 and v are continuous on [0, +(0) and 
that, for c, I > 0, they satisfy the following conditions: u;(c) > 0, u;'(c) < 0, 
for i = 1,2, and v'(l) > 0, vl/(l) > 0. 

3 On the other hand, because V' = v' (I + PI) > 0 always, it follows that it is always possible to 
derive backward solutions. Indicating with St the young agent's saving at the beginning of period 
t, from the budget constraint we get: Ct+ I = Rt+ I St and It = St /Wt. Substituting these variables 
into the first-order conditions, we get </J (St, Rt+ I, Wt) = O. Now because a</J / a Rt+ I = Wt (u' + 
Rt+IStU"), and a</J/JWt = Rt+lu' + StV"Wt-2, it can be seen immediately that J</J/JWt > 0, 
always; on the contrary, J</J/JRt+1 is positive if u' + Ct+IU" > O. that is if I > P2 

4 We use the tenn Neimark bifurcation instead of Hopf bifurcation for discrete-time dynamical 
systems, because the basic results in this area were not found by Hopf but by Neimark (and 
Sarker). Moreover, using the same name for two totally different phenomena is confusing. A 
broad definition of this bifurcation, and some references, are given in Section 5. 
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6 Alfredo Medio and Giorgio Negroni 

The problem faced by the young (representative) agent at the beginning of 
period t is to choose Ct , Ct+ I, and It that solve the following program: 

max [UI(Ct ) + U2(Ct+l) - v(lt)] 

S.t. Stkt:S Wtll - CI 

Ct+1 :s RI+lkl 
Ct, CI+I, kl' II > O. 

The first-order conditions are: 

U;(Ct) - RI+lu;(ct+l) = 0 

u;(ct+I)RI+IWt - V'(ll) = 0 

CI+I = RI+I(wllt - CI)' 

(Ll) 

(1.2) 

(1.3) 

Solving equation (1.3) for R I+I WI> and substituting into equation (1.2) we 
get the following equation: 

(1.4) 

From equation (1.1) we also get RI+ I = u; (cI)/u;(ct+d. Substituting this 
expression into equation (1.4), we get 

u; (CI)CI + u;(ct+dcI+I - Vi (It)lt = O. 

Let us now define the following new functions: UI (CI) 

U2(cI+d == U;(Ct+I)Ct+J, and V(lI) == v'(lt)/t . Then we have 

aUI(cI) I 
-- = u l (cI)[1 - pd, 

aCt 

aU2(CI+I) I --- = U2(Ct+I)[1 - P2], 
aCt+1 

aV(lI) I -- = v (It)[1 + PI], 
all 

where P j (j = 1, 2, l) are the degrees of relative risk adversion associated with 
the relevant (dis)utility functions, as defined above. Using the new functions, 
the dynamical system derived from the consumer's choice is implicitly defined 
by the following equation: 

(1.5) 

To get forward dynamics, we need U2(Ct+l) to be invertible in the relevant 
domain; this, in turn, requires that over the domain, the sign of (1 - P2) does 
not change. When this condition is satisfied, we have 

(1.6) 
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Overlapping generations models 7 

In the sequel of the paper we consider the following utility functions: 

UI(Ct) = -re-C, r > 0 ( J.7a) 

I (J 

UI (ct ) = eCt 0<8<1 ( J.7b) 

I ct 
O<Q'< (J.7c) u2(ct+d = -ct+1 Q' 

I y 
v(lt) = -It y> I. ( J.7d) 

y 

Note that equations (I. 7b-d) are utility functions of the CRRA type, whose 
coefficients of relative risk adversion are, respectively, PI = I - 8, P2 = 1 - Q', 
and PI = Y - 1, and therefore independent of Ct, whereas utility function (7.1 a) 
is of the CARA type, with PI = f (Ct) = Ct. In what follows, we use the labels 
CARA or CRRA when in the dynamical equation (1.6) there appears a function 
of type (1.7a) or (1.7b), respectively. 

3.1 Saving function 

Let us now consider equation (1.4). From this we wish to derive the agent's 
saving function. Let St = Wtlt - Ct denote the saving of the young agent in 
period t. From this definition and from the budget constraints we get 

In general terms, this equation can be written as ¢ (St, R,+ I, Wt , It, ct ) = O. 
Provided that a¢/ast F 0, this equation implicitly defines a saving function: 

St = g(Rt+I' Wt, It. ct ). 
The elasticity of saving with respect to the interest rate is 

1+ P2 + PI - PI 
( 1.8) 

Note that had we not introduced the possibility of consumption in the first 
period, the elasticity of saving with respect to the interest rate would have been 
(1 - P2) (P2 + P/)-I, as in Reichlin (1986). Thus, for a given value of P2 we 
may get a value of the elasticity of saving with respect to the interest rate higher 
(or lower) than that of the Reichlin's model, depending on the values of PI and 

PI.5 

5 In Reichlin's model. saving is an increasing function of the interest rate if P2 < I. In the 
CRRA case, saving is always an increasing function of R; in the CARA case. however. saving is 
positively or negatively related to R. according to whether c, is smaller or larger than 1 + y - a. 
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8 Alfredo Medio and Giorgio Negroni 

Using the functional fonns (1.7), the elasticity of saving with respect to the 
real interest rate becomes 

a R I + I SI I + y - a - CI 

for the CARA case, and 

aSI RI+1 a 
aRI +1 SI 

for the CARA case. 

y-a+8 

Making use of equations (l.7a,c,d), equation (1.6) becomes 

If instead we use equations (1.7~), we get 

(l.9a) 

CI+1 = [Ii _c~ll/a. (l.9b) 

Equation (1.9a), or (1.9b), represents the optimal evolution of consumption, 
derived from consumer's intertemporal choice of consumption and leisure only. 
It is, so to speak, the first half of our dynamical system, to complete which we 
need a second equation that takes the technology side of the system into account. 

4 Leontief technology 

Let us tum to the production side of the economy. As mentioned before, we 
consider two different production technologies: linear Leontief and CES. 

In the fonner case, we assume that output in period t, XI> is produced by 
current labor and capital invested in the previous period; thus, 

XI = min[all' bkl-rl, (l.l0) 

where b > I ( to ensure variability of the economy). In this kind of economy, 
we get RI = b(1 - WI)' Also, the equilibrium condition in the product market 
yields 

XI = kl + CI' (l.ll) 

For simplicity, in what follows we put a = I. From the assumption of full 
employment of capital, we have XI = bkl _ l and, taking into account the equi
librium condition (1.l1), we obtain XI = b(XI-1 - CI-l). From the assumption 
of full employment of labor, and remembering that a = I, we have XI = II' 

Hence, moving forward one period, we obtain the second dynamical equation 
of the model: 

( 1.12) 

Equations (1.9) and (1.12) represent the evolution of the system that is com
patible with intertemporal optimization and equilibrium conditions in a Leontief 
economy. 
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Overlapping generations models 9 

5 Chaotic dynamics in a CRRAL economy 

Let us now consider the simpler case in which both the utility functions for 
first- and second-period consumption are of a CRRA type (the labor dis utility 
function is of this type throughout the paper). In this case, we have the following 
dynamical system: 

(lye) Ija 
Ct+1 = t - ct 

where y > 1, b > 1, and 0 < (a, e) < 1. 

(1.13a) 

(1.13b) 

The system (1. 13a,b) has two equilibria. The first, a trivial one, is EI : (I = 
0, c = 0). The second equilibrium cannot be computed explicitly, but we can 
show that it is unique and strictly positive (In what follows, we assume that 
a :::': e. All of the relevant results could be proved analogously for a < e). 

Lemma 1.1: System (l.13a, b) has a unique positive equilibrium at E2 
(c> 1, l > 1). 

Proof From equation (1.13b), we getl = b(b-I)-IC. From equation (1.13a), 
we get 1 + ce-a = 1/Icy-a, where 1/1 == bY (b - I)-Y. Let us call the left
hand side and the right -hand side of this equation f (c) and g (c), respectively. 
Observe that, having assumed a > e, it follows that limc-+o f(c) = 00, and 
limc- HXl f(c) = l;notealsothatf'(c) < Oandf"(c) > o. Regardingg(c), we 
have g(O) = 0, limc-+oo g(c) = 00 and g'(C) > O.1t follows that f(c) = g(c) 
has a unique solution and this solution is in the first orthant of the (c, I) plane. 

D 
The content of Lemma 1.1 is represented in Figure 1.1 
Let us now analyze the local stability of E I. Evaluating the Jacobian matrix 

at E I , we get 

when e < a. In this case, from inspection of II we see that the eigenvalues 
are respectively 0 and b > 1. Therefore, E I is locally unstable and it is not 
possible to find oscillatory motion around it. (Note that when e > a, the first 
eigenvalue is equal to -00, whereas the second in still equal to b > 1). 

Let us now consider local stability of E2 . Evaluating the Jacobian matrix at 
E2 , we get 

1:.(_b )Y-lcy-a] 
a b-I 

b . 
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10 Alfredo Medio and Giorgio Negroni 

(,g 

Figure 1.1. 

Therefore, we have 

() e a 
Tr h = --c - + b, 

01 

y ce- a 
Det h = (b - 1)- + [y(b - 1) - be]-. 

01 01 

c 

Keeping in mind that stability of equilibrium requires that the following 
conditions be met 

(i) 1 + Tr h+ Det h > 0, 
(ii) 1 - Tr h+ Det h > 0, 

(iii) 1 - Det h > 0, 

we can now state the following result: 

(l.13c) 

Proposition 1.1: Let us consider the equilibrium E2, of the dynamical system 
( i.13a,b); E2 is a stable equilibrium for sufficiently small y, sufficiently large 
01, or sufficiently small b. 

Proof" For simplicity, we prove the proposition assuming 01 = (), but the result 
extends in an obvious manner to the case 01 > (). In this case, the set of inequali
ties (l.13c) that governs the stability conditions becomes: (i) 2y (b-l)0I- 1 > 0; 
(ii) 2(b - l)(y - (1)01- 1 > 0; (iii) 2y(b - 1)01-1 - b - 1 < O. Notice that 
the first two inequalities are always satisfied, because y and b are both larger 
than one. The third inequality is obviously satisfied if y is small, 01 is large, or 
b is near 1. Therefore, low productivity, low elasticity of consumption utility 
function, and high elasticity of labor utility function work for stability. 0 
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