An understanding of organic reaction mechanisms is an essential part of any undergraduate chemistry course. This book describes the principles that govern chemical reactivity, and shows how these principles can be used to make predictions about the mechanisms and outcomes of chemical reactions.

Molecular orbital theory is used to provide up-to-date explanations of chemical reactivity, in an entirely non-mathematical approach suited to organic chemists. A valuable section explains the use of curly arrows, vital for describing reaction mechanisms. A whole chapter is devoted to exploring the thought processes involved in predicting the mechanisms of unfamiliar reactions. Each chapter is followed by a summary of the important points and a selection of problems to help the reader make sure that the material in that chapter has been assimilated. The book concludes with a comprehensive glossary of technical terms.
Understanding organic reaction mechanisms
Understanding
organic reaction mechanisms

A. Jacobs
Contents

Preface
Acknowledgements

1 Chemical structure 1
 1.1 Chemical bonds 1
 1.1.1 Atomic orbitals 1
 1.1.2 Simple bonds 3
 1.1.3 More complicated bonding and hybridization 5
 1.1.4 Multiple bonds 8
 1.2 Resonance structures 9
 1.3 Curly arrows 12
 1.3.1 Curly arrows and resonance structures 13
 1.3.2 Curly arrows and reactions 16
 1.4 HOMOs and LUMOs 18
 1.5 Aromaticity 22
 Summary 26
 Problems 27

2 Ionic species 30
 2.1 Concepts and definitions 30
 2.2 Acids and bases 31
 2.2.1 Definitions of acids and bases 31
 2.2.2 Factors affecting acid strength 34
 2.2.3 Hard and soft acids and bases 39
 2.2.4 Catalysis by acids and bases 41
 2.3 Nucleophiles 44
 2.3.1 Relationship between nucleophilicity and basicity 44
 2.3.2 Hard and soft nucleophiles 45
 2.3.3 Ambident nucleophiles 46
 2.3.4 Alpha effect 47
 2.3.5 Solvent effects 48

vii
CONTENTS

2.4 Electrophiles 49
 2.4.1 Relationship of electrophiles to nucleophiles 49
 2.4.2 Hard and soft electrophiles 50
 2.4.3 Ambident electrophiles 51

2.5 Leaving groups 52
 2.5.1 Definitions of leaving groups 52
 2.5.2 Nucleofugal leaving groups 53
 2.5.3 Electrofugal leaving groups 54

Summary 56
Problems 57

3 Why reactions happen 59
 3.1 Thermodynamics and kinetics compared 59
 3.1.1 Free energy 59
 3.1.2 Equilibrium constants 60
 3.1.3 Kinetics 61
 3.1.4 Reaction profiles 62
 3.1.5 Intermediates and transition states 63
 3.1.6 Thermodynamic versus kinetic control 65

 3.2 Thermodynamic effects 67
 3.2.1 Bond strengths 67
 3.2.2 Ring strain 69
 3.2.3 Aromatic stability 70
 3.2.4 Entropies 71

 3.3 Kinetic effects 73
 3.3.1 Electronic effects 73
 3.3.2 Steric effects 77
 3.3.3 Orbital overlap 79

Summary 80
Problems 81

4 Reactive carbon species 84
 4.1 Carbanions 84
 4.1.1 Structure and stability of carbanions 84
 4.1.2 Formation of carbanions 88
 4.1.3 Reactivity of carbanions 90

 4.2 Carbocations 92
 4.2.1 Structure and stability of carbocations 92
 4.2.2 Formation of carbocations 95
 4.2.3 Reactivity of carbocations 95

 4.3 Radicals 97
 4.3.1 Structure and stability of radicals 97
 4.3.2 Formation of radicals 100
 4.3.3 Reactions of radicals 102

 4.4 Carbenes 107
 4.4.1 Structure and stability of carbenes 107
 4.4.2 Formation of carbenes 108
 4.4.3 Reactivity of carbenes 109
CONTENTS

Summary 111
Problems 112

5 The effect of heteroatoms 115
 5.1 Oxygen 115
 5.1.1 Alcohols 116
 5.1.2 Ethers 117
 5.1.3 Carbonyl groups 118
 5.2 Nitrogen 124
 5.2.1 Amines 124
 5.2.2 Amides 131
 5.2.3 Imines, oximes, and hydrazones 132
 5.2.4 Other nitrogen functions 133
 5.2.5 Nitrenes 137
 5.3 Sulphur 139
 5.3.1 Thiois 140
 5.3.2 Sulphides 141
 5.3.3 Disulphides 142
 5.3.4 Thioesters 143
 5.3.5 Oxidized sulphur functions 143
 5.4 Phosphorus 144
 5.5 Halogens 148
 5.6 Group I and II metals 150
 5.7 Silicon 152
Summary 154
Problems 156

6 Types of reaction 158
 6.1 Additions 158
 6.1.1 Basic principles 158
 6.1.2 Addition to double bonds between carbon and a heteroatom 159
 6.1.3 Addition to carbon–carbon double bonds 163
 6.2 Eliminations 169
 6.2.1 Basic principles 169
 6.2.2 E2 reactions 171
 6.2.3 E1 reactions 175
 6.2.4 Other eliminations 176
 6.3 Substitutions 178
 6.3.1 Basic principles 178
 6.3.2 S_n2 reactions 179
 6.3.3 S_n1 reactions 181
 6.3.4 Substitution versus elimination, unimolecular versus bimolecular 183
 6.3.5 Carbonyl substitution 184
 6.3.6 Aromatic substitution 187
 6.4 Rearrangements 194
 6.5 Pericyclic reactions 197
 6.5.1 Basic principles 197
 6.5.2 The Woodward–Hoffmann rules 198

ix
CONTENTS

6.5.3 The Diels–Alder reaction 202
6.5.4 Other pericyclic reactions 206
Summary 207
Problems 209

7 Techniques for investigating mechanisms 213
7.1 Basic principles 213
7.2 Clues from products 214
7.3 Kinetics 217
7.4 Intermediates 221
7.5 Other methods 223
Summary 225
Problems 226

8 How to suggest mechanisms 228
8.1 Introduction 228
8.2 Types of clues 229
8.2.1 Basic principles 229
8.2.2 Consideration of the carbon skeleton 229
8.2.3 Ionic, radical, or pericyclic? 231
8.2.4 Identifying nucleophiles and electrophiles 231
8.2.5 Common reaction patterns 233
8.2.6 Thermodynamic driving force 233
8.2.7 Conversion of starting materials into reactive species 234
8.2.8 The importance of pH 235
8.3 Worked examples 236
8.3.1 General principles 236
8.3.2 The formation of benzoic anhydride from benzoyl chloride 236
8.3.3 The Darzens condensation 238
8.3.4 The Wolff–Kishner reduction 240
8.3.5 The synthesis of dimedone 242
Summary 244
Problems 245

9 Case histories 247
9.1 The formation of 9-benzylfluorene 247
9.2 DCC-mediated ester formation 252
9.3 The Favorskii rearrangement 259
9.4 Ozonolysis of olefins 263

Glossary 271

Answers to problems 282
Chapter 1 282
Chapter 2 284
Chapter 3 285
Chapter 4 286
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 5</td>
<td>288</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>290</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>296</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>298</td>
</tr>
<tr>
<td>Index</td>
<td>302</td>
</tr>
</tbody>
</table>
Preface

Reaction mechanisms are a fundamental part of the study of organic chemistry, and the aim of this book is to help you to understand them. Organic reaction mechanisms are sometimes perceived to be an incoherent and difficult subject, but in fact there are principles underlying them that make them much easier to grasp. Reading this book should give you a mastery of these principles.

Chapter 1 introduces the basics of chemical bonding. This contains a discussion of frontier orbitals (HOMOs and LUMOs), which are an important part of understanding chemical reactivity. Chapters 2 and 3 describe more of the background to understanding reaction mechanisms, namely the nature of ionic species, which are found in the vast majority of reactions, and the driving forces behind reactions. Chapters 4 and 5 look more closely at the molecules that take part in organic reactions, Chapter 4 dealing with species whose reactivity is centred on carbon, and Chapter 5 addressing molecules with other atoms. Chapter 6 describes the reactions themselves. By this stage in the book, most of the principles behind chemical reactivity have already been explained, so the reactions can be seen to be no more than logical consequences of these. Chapter 7 is something of an aside, and looks at how we know about reaction mechanisms from experimental evidence. Chapter 8 draws on the material presented earlier in the book to help you to suggest mechanisms for unknown reactions, a vital part of any undergraduate chemistry course. Finally, Chapter 9 looks at how knowledge of reaction mechanisms has been used in practice.

This book is primarily designed to be read sequentially, as each chapter makes use of principles explained in previous ones. However, you can also turn to any part of the book to look up a particular topic, as material explained earlier in the book is indicated by cross references.

Organic chemistry is a very rewarding subject, and I hope this book will allow you to pursue your studies more easily. Although organic reaction mechanisms can seem
PREFACE

something of a mystery at first, time spent studying them will be richly rewarded in a greater understanding of organic chemistry as a whole.

A. Jacobs 1997
Acknowledgements

A book such as this requires the work of many more people than just the author. I should like to express my thanks to the staff of Cambridge University Press for all their help in producing this book, and in particular Fiona Thomson, without whom this book would never have been written in the first place. I am also very grateful to Dr Linda Lazarus and Dr Karen Jonsen, both of whom read draft versions of this book and were responsible for removing many of my errors and incomprehensible sentences.

Finally, I should like to thank Carolyn Jones, who not only made many helpful suggestions on a draft of the book, but also bore her book widowhood with fortitude and helped to ensure that all the time I spent slaving over a word processor did not (entirely) turn me into a gibbering wreck.