DEVELOPMENTS IN THE DESIGN
OF THERMAL SYSTEMS

Thermal systems are essential features in power, chemical processing, air conditioning, and other industries where heat and power are used. As the cost and complexity of designing thermal systems have increased, the need to understand and improve the design process has also grown. This book describes recent progress in the design of thermal systems.

The book begins with a brief history and outline of developments in thermal system design. Chapters then discuss computer design tools for the power and chemical industries, predicting physical properties with computational tools, the use of pinch analysis to improve thermal efficiency, applications of the exergy concept, the emerging concept of thermoeconomics, and the potential for artificial intelligence and expert systems in the design of thermal systems.

With chapters written by internationally recognized authorities, the book offers a state-of-the-art review for both researchers and practitioners in mechanical, aerospace, chemical, and power engineering.
DEVELOPMENTS IN THE DESIGN
OF THERMAL SYSTEMS

Edited by
ROBERT F. BOEHM
University of Nevada at Las Vegas

© Cambridge University Press
Contents

Preface xi

Biographical sketches of the authors xiii

1 Introduction and trends in the thermal design field Robert F. Boehm 1

1.1 Brief history of thermal system design 1

1.1.1 Early developments 1

1.1.2 The impetus due to engine development 1

1.1.3 200 fruitful years 2

1.1.4 Developments in the power and chemical industries 3

1.1.5 Flow sheeting 4

1.1.6 Property evaluation 5

1.1.7 Current developments 6

1.2 Future trends in design systems 7

1.2.1 Computer-aided design 7

1.2.2 Artificial intelligence 8

1.3 Basic elements of thermal system design 9

1.4 Simulators 12

References 14

2 Computer-aided process design trends in the power industry Robert M. Privette 16

2.1 Introduction 16

2.2 Power plant applications 20

2.3 End user requirements 27

2.4 Software tools 31

2.5 Transient simulators 36

2.6 Other software tools 37

2.7 Conclusions 37

References 38
Contents

3 Automated design of chemical process plants Rudolphe L. Motard 40
 3.1 Principal activities in design 40
 3.1.1 An activity model for process engineering 40
 3.1.2 Process synthesis 45
 3.1.3 Process design 45
 3.2 Automated design in the chemical process industries 48
 3.2.1 Brief history of flow sheeting 48
 3.2.2 General capabilities of automated flow sheeting systems 49
 3.2.3 Flow sheeting example 50
 3.3 Process synthesis in energy integration 55
 3.4 Electronic data interchange 58
 References 66

4 Thermophysical properties for design simulations Ronald P. Danner, Calvin F. Spencer, Manoj Nagvekar 76
 4.1 Introduction 76
 4.2 What can the design engineer expect to find in the literature? 77
 4.3 Importance of properties 78
 4.4 What accuracy is required? 79
 4.5 The computer – its advantages, its pitfalls 82
 4.6 Data compilations 84
 4.6.1 Pure component data 88
 4.6.2 Mixture data 88
 4.7 Correlation and prediction methods 92
 4.7.1 Compendiums of correlation and prediction methods 94
 4.8 Simulation programs 96
 4.9 Phase equilibrium 99
 4.10 Thermal properties 104
 4.11 Design examples 106
 References 118

5 Introduction to Pinch Analysis Bodo Linnhoff 122
 5.1 Introduction 122
 5.2 The basics 123
 5.3 Stream-based T-H diagrams 123
 5.4 Composite curves, energy targets, and the pinch 124
 5.5 The pinch and heat-exchanger network design 125
 5.6 The grid diagram 126
 5.7 The grand composite curve, appropriate placement, and balanced composite curves 127
 5.8 Additional benefits 129
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>Extensions of Pinch Analysis</td>
<td>129</td>
</tr>
<tr>
<td>5.10</td>
<td>Supertargeting</td>
<td>130</td>
</tr>
<tr>
<td>5.11</td>
<td>The plus/minus principle</td>
<td>130</td>
</tr>
<tr>
<td>5.12</td>
<td>Column profiles</td>
<td>131</td>
</tr>
<tr>
<td>5.13</td>
<td>Shaftwork targeting</td>
<td>132</td>
</tr>
<tr>
<td>5.14</td>
<td>Total site integration</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>137</td>
</tr>
<tr>
<td>6</td>
<td>Second Law applications in thermal system design</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Michael J. Moran</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Preliminaries</td>
<td>139</td>
</tr>
<tr>
<td>6.2</td>
<td>The second law in design: heat exchanger example</td>
<td>140</td>
</tr>
<tr>
<td>6.3</td>
<td>Exergy fundamentals</td>
<td>143</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Engineering thermodynamics principles</td>
<td>143</td>
</tr>
<tr>
<td>6.3.1.1</td>
<td>Mass rate balance</td>
<td>143</td>
</tr>
<tr>
<td>6.3.1.2</td>
<td>Energy rate balance</td>
<td>143</td>
</tr>
<tr>
<td>6.3.1.3</td>
<td>Entropy rate balance</td>
<td>145</td>
</tr>
<tr>
<td>6.3.1.4</td>
<td>Steady-state rate balances</td>
<td>147</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Defining exergy</td>
<td>147</td>
</tr>
<tr>
<td>6.3.2.1</td>
<td>Environment</td>
<td>148</td>
</tr>
<tr>
<td>6.3.2.2</td>
<td>Dead state</td>
<td>149</td>
</tr>
<tr>
<td>6.3.2.3</td>
<td>Exergy components</td>
<td>149</td>
</tr>
<tr>
<td>6.3.2.4</td>
<td>Physical exergy</td>
<td>150</td>
</tr>
<tr>
<td>6.3.2.5</td>
<td>Chemical exergy</td>
<td>150</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Exergy balance</td>
<td>154</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Exergy analysis</td>
<td>156</td>
</tr>
<tr>
<td>6.4</td>
<td>Sample case: preliminary design of a cogeneration system</td>
<td>159</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Understanding the problem</td>
<td>159</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Concept generation</td>
<td>160</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Concept development: base-case flow sheet</td>
<td>162</td>
</tr>
<tr>
<td>6.5</td>
<td>Computer-aided process engineering</td>
<td>167</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Preliminaries</td>
<td>167</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Process synthesis software</td>
<td>168</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Analysis and optimization: flow sheeting software</td>
<td>169</td>
</tr>
<tr>
<td>6.6</td>
<td>Closure</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>171</td>
</tr>
<tr>
<td>7</td>
<td>Thermodynamic optimization of heat transfer and fluid flow processes</td>
<td>173</td>
</tr>
<tr>
<td>7.1</td>
<td>The method of entropy generation minimization or finite time thermodynamics</td>
<td>173</td>
</tr>
<tr>
<td>7.2</td>
<td>Balancing the heat transfer and fluid flow irreversibilities</td>
<td>175</td>
</tr>
</tbody>
</table>
Contents

7.2.1 Internal flow .. 175
7.2.2 Heat transfer augmentation 178
7.2.3 External flow and heat transfer 181
7.3 Heat exchangers ... 182
 7.3.1 The tradeoff between heat transfer and fluid flow irreversibilities 182
 7.3.2 Flow imbalance irreversibility 185
 7.3.3 Combined heat transfer, fluid flow, and imbalance irreversibilities 186
7.4 The optimal allocation of a fixed heat exchanger inventory 188
 7.4.1 Power plants ... 188
 7.4.2 Refrigeration plants 193
7.5 Strategies for optimizing time-dependent processes 196
 7.5.1 Latent heat storage 196
 7.5.2 Sensible heat storage 198
 7.5.3 The optimal heating or cooling of a body subject to time constraint 199
7.6 Conclusions .. 200
References .. 201

8 An introduction of thermoeconomics Antonio Valero and Miguel-Ángel Lozano 203
 8.1 Why thermoeconomics? 203
 8.1.1 The exergetic cost and the process of cost formation 204
 8.2 Definitions and concepts 205
 8.3 Cost accounting and the theory of exergetic cost 209
 8.3.1 Determination of exergetic costs 210
 8.3.2 Exergoeconomic cost 213
 8.3.3 Results ... 214
 8.3.4 External assessment and additional concepts 215
 8.3.4.1 Exergetic amortization 215
 8.3.4.2 Residues 216
 8.3.4.3 Assessment of the plant fuels 216
 8.3.4.4 Cumulative exergetic cost or ecological cost 216
 8.4 Symbolic exergoeconomics 217
 8.4.1 Symbolic computation and exergoeconomics 217
 8.4.2 The FP representation 220
 8.4.3 The PF representation 221
 8.4.4 Fuel and product symbolic analysis 223
 8.4.5 Application to thermal system simulation 226
Contents

8.5 Thermoeconomic optimization

References 231

9 Artificial intelligence in thermal systems design: concepts and applications

Beniamino Paolletti and Enrico Sciubba

9.1 Artificial intelligence and expert systems 234

9.2 Possible versus existing applications of AI in powerplant design and operation 235

9.3 Artificial intelligence

9.3.1 Artificial intelligence is no intelligence! 235

9.3.2 Definition of terms and concepts

9.3.2.1 Artificial intelligence 236

9.3.2.2 Expert systems 236

9.3.2.3 Knowledge base 237

9.3.2.4 Inference engine 237

9.3.2.5 Rules 237

9.3.2.6 Facts 237

9.3.2.7 Objects 238

9.3.2.8 Classes 238

9.3.2.9 Induction 238

9.3.2.10 Deduction 239

9.3.2.11 Backward chaining 239

9.3.2.12 Forward chaining 239

9.3.2.13 Decision tree 240

9.3.3 Limitations in logical systems 241

9.3.4 Approximate reasoning 241

9.3.5 Examples and problems 242

9.3.5.1 Construction of a decision tree 242

9.3.5.2 An application example: search methods 244

9.3.6 Techniques for developing expert systems 245

9.3.6.1 Fundamentals 245

9.3.6.2 Steps in the development of an expert system: a general workplan 246

9.3.6.3 Artificial intelligence languages and shells 251

9.3.6.4 Examples and problems 254

9.4 Applications of artificial intelligence methods to the design of thermal systems 258

9.4.1 Foreword 258

9.4.2 Choice of a feed water pump 258

9.4.3 Choice and technical specification of a gas turbine plant 261
Contents

9.4.4 Process design: choice and technical specification of a fossil-fueled powerplant 264
9.4.5 Choice of optimal steam and power generation for plant expansion 271

References 277
Subject Index 279
Author Index 285
Preface

This book is a milestone in the presentation of developments in techniques used to design thermal systems. On these pages is an overview of current practice in this rapidly developing field.

With roots tracing to the use of Second Law ideas for design applications decades ago, the design of thermal systems has advanced quickly in the last 20 years. The many computational tools now available make it possible to evaluate virtually all aspects of the performance of systems, from overall behavior to the details of each of the component processes. Every aspect of these types of analysis has seen significant accomplishments.

What has not been done previously is to summarize the cutting-edge trends in this field – the aim of this book. Drawing on the work of people from around the world, the book gives a good cross section of progress made to date.

Designers of thermal systems are practitioners from a variety of disciplines. Although the major contributors and users have been chemical and mechanical engineers, many others find the approaches that have been developed to be of great value. It is not unusual to find a symposium taking place on a regular basis somewhere in the world on issues related to this field.

The book starts with an outline of the major industrial thrusts that have shaped design interests in thermal systems. Summaries are then given of design trends in both the power industry (Chapter 2) and the chemical process industry (Chapter 3). Significant impacts of the rapid strides experienced in computer technology are in evidence here. Equally important is the ability to predict material properties, and Chapter 4 summarizes how this is done in modern codes. Pinch analysis, a technique that has been shown to be valuable in efficiently allocating energy in new systems, as well as in modifying existing ones, is given in Chapter 5. Applications of exergy, a concept that is an outgrowth of Second Law ideas and has become important in the design process, are summarized in Chapters 6 and 7. Topics in thermoeconomics and the application of artificial
Preface

intelligence, which have been less fully developed as design tools at this time, are described in Chapters 8 and 9, respectively.

I particularly wish to thank the authors. They are busy but have taken the time to summarize carefully the key areas of this field. The definitive insights set down by these experts make this book valuable to people involved in the design of systems.

I also greatly value the assistance of Florence Padgett, editor at Cambridge University Press, in this effort. She appreciated the need for a monograph in this area. Also, she obviously has been involved with many efforts of this sort, because she understood all the excuses when deadlines slipped.

Robert F. Boehm
Biographical sketches of the authors

Adrian Bejan is the J. A. Jones Professor of Mechanical Engineering at Duke University. He received his B.S. (1972), M.S. (1972) and Ph.D. (1975) from the Massachusetts Institute of Technology. Professor Bejan is the author of eight books and more than 240 peer-reviewed articles that cover a wide variety of topics in thermodynamics, heat transfer, and fluid mechanics. He is the recipient of the Heat Transfer Memorial Award (1994), the James Harry Potter Gold Medal (1990), and the Gustus L. Larson Memorial Award (1988) of the American Society of Mechanical Engineers.

Robert F. Boehm is Professor of Mechanical Engineering at the University of Nevada, Las Vegas (UNLV), a position he has held since 1990. He was on the faculty of the University of Utah Department of Mechanical Engineering for 21 years. He holds a Ph.D. in mechanical engineering from the University of California at Berkeley. Dr. Boehm is a registered professional engineer, a fellow of the ASME, and was awarded the Distinguished Teaching Award from the University of Utah and the highest research award from UNLV, the Barrick Senior Scholar Award. He has published extensively in heat transfer, design of thermal systems, and energy conversion topics and is the author of the text *Design Analysis of Thermal Systems*. He has held professional positions with General Electric Company and Sandia National Laboratories.

Ronald P. Danner received his Ph.D. degree in chemical engineering from Lehigh University in 1965. He worked as a senior research scientist at the Eastman Kodak Company until 1967. Since that time he has been a professor of chemical engineering at the Pennsylvania State University. He served as a visiting professor at the Technical University of Denmark in 1983 and 1991. He is coauthor of five books dealing with the correlation or prediction of thermophysical properties. His research interests include phase equilibria and diffusion
Biographical sketches of the authors

in polymer-solvent systems, prediction of thermodynamic properties of fluids, and adsorption of gases and liquids on solids.

Bodo Linnhoff is chairman and CEO of Linnhoff March International (United Kingdom), and honorary professor, Department of Process Integration, University of Manchester Institute of Science and Technology (UMIST). He received his Ph.D. in chemical engineering from Leeds University in 1976. From 1982 to 1994 he was professor of chemical engineering at UMIST, where he established the Process Integration Research Consortium, the Centre for Process Integration, and the Department of Process Integration. He established the basis of pinch technology as part of his Ph.D. work, and he has developed the concept further since then. Dr. Linnhoff is a chartered engineer and fellow of the Institution of Chemical Engineers.

Miguel-Angel Lozano is a professor of mechanical engineering at the University of Zaragoza, Spain, and a member of CIRCE, a center for research in power plant efficiency. The center is sponsored by the Spanish National Company of Electricity, ENDESA; the Regional Government of Aragón; and the University of Zaragoza. He is an active contributor to the field of thermoeconomics, the application of economics, and the Second Law. He is the corecipient of three ASME Edward F. Obert awards for papers on this topic, and he has published more than ninety papers in this field.

Rudolphe (Rudy) L. Motard is professor and former chairman of chemical engineering at Washington University in St. Louis, which he joined in 1978 after 21 years at the University of Houston. He holds a D.Sc. in chemical engineering from Carnegie-Mellon University and an undergraduate degree from Queen’s University in Canada. He has coauthored thirty-seven publications,
including two books, mostly on computer applications in chemical engineering. His pioneering work in chemical process simulation earned him the AIChE, CAST Division award in 1991. His current research interests include process synthesis and simulation, engineering databases, and process monitoring. He is a consultant to the AIChE, Process Data Exchange Institute, and a fellow of AIChE. He was chair of CAST in 1995.

Manoj Nagvekar received his Ph.D. degree in chemical engineering from the Pennsylvania State University in 1990. Since then, he has been with the M. W. Kellogg Company in Houston, Texas, and is presently a senior process engineer in the Technical Data Group of the Process Engineering Department. He has been involved with several aspects of thermodynamic data work including analysis, modeling, and correlation of data; software development; and modification and application of commercial simulation programs for process design.

Beniamino Paolletti is project manager of Decision Support Systems at Alitalia, Rome, Italy. He holds an M.S. in philosophy from the University of Roma 1, where he did postgraduate work in the fields of mathematical logic and applications of AI techniques to the formalization of natural languages. He joined the Department of Operational Research of Alitalia in 1988, where he coordinated advanced applications in the fields of combinatorial optimization and graph theory, with specific regard to scheduling and operation control. Since 1990, Dr. Paolletti has been an adjunct researcher at the University of Roma 1, where he cooperates in a long rage research project on expert systems applications to the design of thermal systems.

Robert M. Privette earned his B.S. and M.S. degrees in mechanical engineering, having received the latter from Purdue University in 1986. He has more than 10 years of experience in hydraulic and thermal-hydraulic systems. He has worked in the U.S. defense and power generation industries and is currently employed by Babcock & Wilcox (B&W) in their Research & Development Division in Alliance, Ohio. With B&W he has done experimental research related to nuclear production reactors and has managed the Power Systems Evaluation Section, which used process simulation software to evaluate and design various power generation systems. He currently manages a demonstration program for ten-kilowatt solid oxide fuel cell systems and evaluates new technologies of interest to B&W and its parent company, McDermott International.

Enrico Sciubba is a professor in the Mechanical and Aeronautical Engineering Department of the University of Roma 1, La Sapienza, where he teaches thermal sciences. His specific research fields relate to CFD applications to
Biographical sketches of the authors

turbomachinery flows and modeling and simulation of thermodynamic cycles and processes. He has authored or coauthored more than seventy internationally published papers on these topics, including about ten concerning expert systems applications to the design and optimization of thermal processes. Dr. Sciubba holds an M.E. from the University of Roma (1972) and a Ph.D. from Rutgers University (1981). He taught thermal sciences at Rutgers and C.U.A. (Washington D.C.) and is involved in several international research projects in applied fluid dynamics and thermodynamics.

Calvin Spencer received his Ph.D. degree in chemical engineering from the Pennsylvania State University in 1975. Since graduation he has worked at the M. W. Kellogg Company in Houston, Texas, where he is presently chief technology engineer of the Technical Data Group, which is responsible for the integrity of all thermophysical property and phase equilibrium data used in process design and simulation. He has spearheaded the development of comprehensive data packages for a broad range of technologies, including a number of first-of-a-kind and specialty chemical processes, and the integration of these models with the major commercial simulation programs. He is the coauthor of several papers on the correlation and estimation of physical properties and phase equilibrium.

Antonio Valero is the chairman of the Department of Mechanical Engineering at the University of Zaragoza, Spain, and the director and founder of CIRCE, a center for research in power plant efficiency, presently composed of a team of sixty researchers. CIRCE is a joint institution sponsored by the Spanish National Company of Electricity, ENDESA; the Regional Government of Aragón; and the University of Zaragoza. He is one of the main contributors to the development of the topic of thermo-economics, the merging of concepts from economics and the Second Law. He is a coreipient of three ASME Edward F. Obert awards related to this topic, and he has published more than ninety papers in this field. Since 1986 he has been a member of the worldwide Second Law Analysis Conferences.