Contents

Preface xix
List of tables xxiii
Notation xxvii

1 Introduction 1
1.1 What are exact solutions, and why study them? 1
1.2 The development of the subject 3
1.3 The contents and arrangement of this book 4
1.4 Using this book as a catalogue 7

Part I: General methods 9

2 Differential geometry without a metric 9
2.1 Introduction 9
2.2 Differentiable manifolds 10
2.3 Tangent vectors 12
2.4 One-forms 13
2.5 Tensors 15
2.6 Exterior products and p-forms 17
2.7 The exterior derivative 18
2.8 The Lie derivative 21
2.9 The covariant derivative 23
2.10 The curvature tensor 25
2.11 Fibre bundles 27
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Some topics in Riemannian geometry</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>The metric tensor and tetrads</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Calculation of curvature from the metric</td>
<td>34</td>
</tr>
<tr>
<td>3.4</td>
<td>Bivectors</td>
<td>35</td>
</tr>
<tr>
<td>3.5</td>
<td>Decomposition of the curvature tensor</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Spinors</td>
<td>40</td>
</tr>
<tr>
<td>3.7</td>
<td>Conformal transformations</td>
<td>43</td>
</tr>
<tr>
<td>3.8</td>
<td>Discontinuities and junction conditions</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>The Petrov classification</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>The eigenvalue problem</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>The Petrov types</td>
<td>49</td>
</tr>
<tr>
<td>4.3</td>
<td>Principal null directions and determination of the Petrov types</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>Classification of the Ricci tensor and the energy-momentum tensor</td>
<td>57</td>
</tr>
<tr>
<td>5.1</td>
<td>The algebraic types of the Ricci tensor</td>
<td>57</td>
</tr>
<tr>
<td>5.2</td>
<td>The energy-momentum tensor</td>
<td>60</td>
</tr>
<tr>
<td>5.3</td>
<td>The energy conditions</td>
<td>63</td>
</tr>
<tr>
<td>5.4</td>
<td>The Rainich conditions</td>
<td>64</td>
</tr>
<tr>
<td>5.5</td>
<td>Perfect fluids</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Vector fields</td>
<td>68</td>
</tr>
<tr>
<td>6.1</td>
<td>Vector fields and their invariant classification</td>
<td>68</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Timelike unit vector fields</td>
<td>70</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Geodesic null vector fields</td>
<td>70</td>
</tr>
<tr>
<td>6.2</td>
<td>Vector fields and the curvature tensor</td>
<td>72</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Timelike unit vector fields</td>
<td>72</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Null vector fields</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>The Newman–Penrose and related formalisms</td>
<td>75</td>
</tr>
<tr>
<td>7.1</td>
<td>The spin coefficients and their transformation laws</td>
<td>75</td>
</tr>
<tr>
<td>7.2</td>
<td>The Ricci equations</td>
<td>78</td>
</tr>
<tr>
<td>7.3</td>
<td>The Bianchi identities</td>
<td>81</td>
</tr>
<tr>
<td>7.4</td>
<td>The GHP calculus</td>
<td>84</td>
</tr>
<tr>
<td>7.5</td>
<td>Geodesic null congruences</td>
<td>86</td>
</tr>
<tr>
<td>7.6</td>
<td>The Goldberg–Sachs theorem and its generalizations</td>
<td>87</td>
</tr>
</tbody>
</table>
8 Continuous groups of transformations; isometry and homothety groups 91
8.1 Lie groups and Lie algebras 91
8.2 Enumeration of distinct group structures 95
8.3 Transformation groups 97
8.4 Groups of motions 98
8.5 Spaces of constant curvature 101
8.6 Orbits of isometry groups 104
8.6.1 Simply-transitive groups 105
8.6.2 Multiply-transitive groups 106
8.7 Homothety groups 110
9 Invariants and the characterization of geometries 112
9.1 Scalar invariants and covariants 113
9.2 The Cartan equivalence method for space-times 116
9.3 Calculating the Cartan scalars 120
9.3.1 Determination of the Petrov and Segre types 120
9.3.2 The remaining steps 124
9.4 Extensions and applications of the Cartan method 125
9.5 Limits of families of space-times 126
10 Generation techniques 129
10.1 Introduction 129
10.2 Lie symmetries of Einstein’s equations 129
10.2.1 Point transformations and their generators 129
10.2.2 How to find the Lie point symmetries of a given differential equation 131
10.2.3 How to use Lie point symmetries: similarity reduction 132
10.3 Symmetries more general than Lie symmetries 134
10.3.1 Contact and Lie–Bäcklund symmetries 134
10.3.2 Generalized and potential symmetries 134
10.4 Prolongation 137
10.4.1 Integral manifolds of differential forms 137
10.4.2 Isovectors, similarity solutions and conservation laws 140
10.4.3 Prolongation structures 141
10.5 Solutions of the linearized equations 145
10.6 Bäcklund transformations 146
10.7 Riemann–Hilbert problems 148
10.8 Harmonic maps 148
10.9 Variational Bäcklund transformations 151
10.10 Hirota’s method 152
Contents

10.11 Generation methods including perfect fluids 152
 10.11.1 Methods using the existence of Killing vectors 152
 10.11.2 Conformal transformations 155

Part II: Solutions with groups of motions 157

11 Classification of solutions with isometries or homotheties 157
 11.1 The possible space-times with isometries 157
 11.2 Isotropy and the curvature tensor 159
 11.3 The possible space-times with proper homothetic motions 162
 11.4 Summary of solutions with homotheties 167

12 Homogeneous space-times 171
 12.1 The possible metrics 171
 12.2 Homogeneous vacuum and null Einstein-Maxwell space-times 174
 12.3 Homogeneous non-null electromagnetic fields 175
 12.4 Homogeneous perfect fluid solutions 177
 12.5 Other homogeneous solutions 180
 12.6 Summary 181

13 Hypersurface-homogeneous space-times 183
 13.1 The possible metrics 183
 13.1.1 Metrics with a G_6 on V_3 183
 13.1.2 Metrics with a G_4 on V_3 183
 13.1.3 Metrics with a G_3 on V_3 187
 13.2 Formulations of the field equations 188
 13.3 Vacuum, Λ-term and Einstein–Maxwell solutions 194
 13.3.1 Solutions with multiply-transitive groups 194
 13.3.2 Vacuum spaces with a G_3 on V_3 196
 13.3.3 Einstein spaces with a G_3 on V_3 199
 13.3.4 Einstein–Maxwell solutions with a G_3 on V_3 201
 13.4 Perfect fluid solutions homogeneous on T_3 204
 13.5 Summary of all metrics with G_r on V_3 207

14 Spatially-homogeneous perfect fluid cosmologies 210
 14.1 Introduction 210
 14.2 Robertson–Walker cosmologies 211
 14.3 Cosmologies with a G_4 on S_3 214
 14.4 Cosmologies with a G_3 on S_3 218
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Groups G_3 on non-null orbits V_2. Spherical and plane symmetry</td>
<td>226</td>
</tr>
<tr>
<td>15.1 Metric, Killing vectors, and Ricci tensor</td>
<td>226</td>
</tr>
<tr>
<td>15.2 Some implications of the existence of an isotropy group I_1</td>
<td>228</td>
</tr>
<tr>
<td>15.3 Spherical and plane symmetry</td>
<td>229</td>
</tr>
<tr>
<td>15.4 Vacuum, Einstein–Maxwell and pure radiation fields</td>
<td>230</td>
</tr>
<tr>
<td>15.4.1 Timelike orbits</td>
<td>230</td>
</tr>
<tr>
<td>15.4.2 Spacelike orbits</td>
<td>231</td>
</tr>
<tr>
<td>15.4.3 Generalized Birkhoff theorem</td>
<td>232</td>
</tr>
<tr>
<td>15.4.4 Spherically- and plane-symmetric fields</td>
<td>233</td>
</tr>
<tr>
<td>15.5 Dust solutions</td>
<td>235</td>
</tr>
<tr>
<td>15.6 Perfect fluid solutions with plane, spherical or pseudospherical</td>
<td>237</td>
</tr>
<tr>
<td>symmetry</td>
<td></td>
</tr>
<tr>
<td>15.6.1 Some basic properties</td>
<td>237</td>
</tr>
<tr>
<td>15.6.2 Static solutions</td>
<td>238</td>
</tr>
<tr>
<td>15.6.3 Solutions without shear and expansion</td>
<td>238</td>
</tr>
<tr>
<td>15.6.4 Expanding solutions without shear</td>
<td>239</td>
</tr>
<tr>
<td>15.6.5 Solutions with nonvanishing shear</td>
<td>240</td>
</tr>
<tr>
<td>15.7 Plane-symmetric perfect fluid solutions</td>
<td>243</td>
</tr>
<tr>
<td>15.7.1 Static solutions</td>
<td>243</td>
</tr>
<tr>
<td>15.7.2 Non-static solutions</td>
<td>244</td>
</tr>
<tr>
<td>16 Spherically-symmetric perfect fluid solutions</td>
<td>247</td>
</tr>
<tr>
<td>16.1 Static solutions</td>
<td>247</td>
</tr>
<tr>
<td>16.1.1 Field equations and first integrals</td>
<td>247</td>
</tr>
<tr>
<td>16.1.2 Solutions</td>
<td>250</td>
</tr>
<tr>
<td>16.2 Non-static solutions</td>
<td>251</td>
</tr>
<tr>
<td>16.2.1 The basic equations</td>
<td>251</td>
</tr>
<tr>
<td>16.2.2 Expanding solutions without shear</td>
<td>253</td>
</tr>
<tr>
<td>16.2.3 Solutions with non-vanishing shear</td>
<td>260</td>
</tr>
<tr>
<td>17 Groups G_2 and G_1 on non-null orbits</td>
<td>264</td>
</tr>
<tr>
<td>17.1 Groups G_2 on non-null orbits</td>
<td>264</td>
</tr>
<tr>
<td>17.1.1 Subdivisions of the groups G_2</td>
<td>264</td>
</tr>
<tr>
<td>17.1.2 Groups G_2I on non-null orbits</td>
<td>265</td>
</tr>
<tr>
<td>17.1.3 G_2II on non-null orbits</td>
<td>267</td>
</tr>
<tr>
<td>17.2 Boost-rotation-symmetric space-times</td>
<td>268</td>
</tr>
<tr>
<td>17.3 Group G_1 on non-null orbits</td>
<td>271</td>
</tr>
<tr>
<td>18 Stationary gravitational fields</td>
<td>275</td>
</tr>
<tr>
<td>18.1 The projection formalism</td>
<td>275</td>
</tr>
</tbody>
</table>
Contents

18.2 The Ricci tensor on Σ_3 277
18.3 Conformal transformation of Σ_3 and the field equations 278
18.4 Vacuum and Einstein–Maxwell equations for stationary fields 279
18.5 Geodesic eigenrays 281
18.6 Static fields 283
\hspace{1cm}18.6.1 Definitions 283
\hspace{1cm}18.6.2 Vacuum solutions 284
\hspace{1cm}18.6.3 Electrostatic and magnetostatic Einstein–Maxwell fields 284
\hspace{1cm}18.6.4 Perfect fluid solutions 286
18.7 The conformastationary solutions 287
\hspace{1cm}18.7.1 Conformastationary vacuum solutions 287
\hspace{1cm}18.7.2 Conformastationary Einstein–Maxwell fields 288
18.8 Multipole moments 289

19 Stationary axisymmetric fields: basic concepts and field equations 292
19.1 The Killing vectors 292
19.2 Orthogonal surfaces 293
19.3 The metric and the projection formalism 296
19.4 The field equations for stationary axisymmetric Einstein–Maxwell fields 298
19.5 Various forms of the field equations for stationary axisymmetric vacuum fields 299
19.6 Field equations for rotating fluids 302

20 Stationary axisymmetric vacuum solutions 304
20.1 Introduction 304
20.2 Static axisymmetric vacuum solutions (Weyl’s class) 304
\hspace{1cm}20.3 The class of solutions $U = U(\omega)$ (Papapetrou’s class) 309
\hspace{1cm}20.4 The class of solutions $S = S(A)$ 310
20.5 The Kerr solution and the Tomimatsu–Sato class 311
20.6 Other solutions 313
20.7 Solutions with factor structure 316

21 Non-empty stationary axisymmetric solutions 319
21.1 Einstein–Maxwell fields 319
\hspace{1cm}21.1.1 Electrostatic and magnetostatic solutions 319
\hspace{1cm}21.1.2 Type D solutions: A general metric and its limits 322
\hspace{1cm}21.1.3 The Kerr–Newman solution 325
Contents

21.1.4 Complexification and the Newman–Janis ‘complex trick’ 328
21.1.5 Other solutions 329
21.2 Perfect fluid solutions
 21.2.1 Line element and general properties 330
 21.2.2 The general dust solution 331
 21.2.3 Rigidly rotating perfect fluid solutions 333
 21.2.4 Perfect fluid solutions with differential rotation 337

22 Groups G_2I on spacelike orbits: cylindrical symmetry 341
 22.1 General remarks 341
 22.2 Stationary cylindrically-symmetric fields 342
 22.3 Vacuum fields 350
 22.4 Einstein–Maxwell and pure radiation fields 354

23 Inhomogeneous perfect fluid solutions with symmetry 358
 23.1 Solutions with a maximal H_3 on S_3 359
 23.2 Solutions with a maximal H_3 on T_3 361
 23.3 Solutions with a G_2 on S_2
 23.3.1 Diagonal metrics 362
 23.3.2 Non-diagonal solutions with orthogonal transitivity 372
 23.3.3 Solutions without orthogonal transitivity 373
 23.4 Solutions with a G_1 or a H_2 374

24 Groups on null orbits. Plane waves 375
 24.1 Introduction 375
 24.2 Groups G_3 on N_3 376
 24.3 Groups G_2 on N_2 377
 24.4 Null Killing vectors (G_1 on N_1)
 24.4.1 Non-twisting null Killing vector 379
 24.4.2 Twisting null Killing vector 382
 24.5 The plane-fronted gravitational waves with parallel rays
 (pp-waves) 383

25 Collision of plane waves 387
 25.1 General features of the collision problem 387
 25.2 The vacuum field equations 389
 25.3 Vacuum solutions with collinear polarization 392
 25.4 Vacuum solutions with non-collinear polarization 394
 25.5 Einstein–Maxwell fields 397
Table of Contents

25.6 Stiff perfect fluids and pure radiation
- 25.6.1 Stiff perfect fluids 403
- 25.6.2 Pure radiation (null dust) 405

Part III: Algebraically special solutions

26 The various classes of algebraically special solutions. Some algebraically general solutions
- 26.1 Solutions of Petrov type II, D, III or N 407
- 26.2 Petrov type D solutions 412
- 26.3 Conformally flat solutions 413
- 26.4 Algebraically general vacuum solutions with geodesic and non-twisting rays 413

27 The line element for metrics with $\kappa = \sigma = 0 = R_{11} = R_{14} = R_{44}$, $\Theta + i \omega \neq 0$
- 27.1 The line element in the case with twisting rays ($\omega \neq 0$) 416
- 27.1.1 The choice of the null tetrad 416
- 27.1.2 The coordinate frame 418
- 27.1.3 Admissible tetrad and coordinate transformations 420
- 27.2 The line element in the case with non-twisting rays ($\omega = 0$) 420

28 Robinson–Trautman solutions
- 28.1 Robinson–Trautman vacuum solutions 422
- 28.1.1 The field equations and their solutions 422
- 28.1.2 Special cases and explicit solutions 424
- 28.2 Robinson–Trautman Einstein–Maxwell fields
- 28.2.1 Line element and field equations 427
- 28.2.2 Solutions of type III, N and O 429
- 28.2.3 Solutions of type D 429
- 28.2.4 Type II solutions 431
- 28.3 Robinson–Trautman pure radiation fields 435
- 28.4 Robinson–Trautman solutions with a cosmological constant Λ 436

29 Twisting vacuum solutions
- 29.1 Twisting vacuum solutions – the field equations 437
- 29.1.1 The structure of the field equations 437
- 29.1.2 The integration of the main equations 438
- 29.1.3 The remaining field equations 440
- 29.1.4 Coordinate freedom and transformation properties 441
Contents

29.2 Some general classes of solutions 442
 29.2.1 Characterization of the known classes of solutions 442
 29.2.2 The case $\partial_\zeta I = \partial_\zeta (G - \partial_\zeta G) \neq 0$ 445
 29.2.3 The case $\partial_\zeta I = \partial_\zeta (G^2 - \partial_\zeta G) \neq 0$, $L_u = 0$ 446
 29.2.4 The case $I = 0$ 447
 29.2.5 The case $I = 0 = L_u$ 449
 29.2.6 Solutions independent of ζ and $\overline{\zeta}$ 450
 29.3 Solutions of type N ($\Psi_2 = 0 = \Psi_3$) 451
 29.4 Solutions of type III ($\Psi_2 = 0, \Psi_3 \neq 0$) 452
 29.5 Solutions of type D ($3\Psi_2 \Psi_4 = 2\Psi_2^2, \Psi_2 \neq 0$) 452
 29.6 Solutions of type II 454

30 Twisting Einstein–Maxwell and pure radiation fields 455
 30.1 The structure of the Einstein–Maxwell field equations 455
 30.2 Determination of the radial dependence of the metric and the Maxwell field 456
 30.3 The remaining field equations 458
 30.4 Charged vacuum metrics 459
 30.5 A class of radiative Einstein–Maxwell fields ($\Phi_0^0 \neq 0$) 460
 30.6 Remarks concerning solutions of the different Petrov types 461
 30.7 Pure radiation fields 463
 30.7.1 The field equations 463
 30.7.2 Generating pure radiation fields from vacuum by changing P 464
 30.7.3 Generating pure radiation fields from vacuum by changing m 466
 30.7.4 Some special classes of pure radiation fields 467

31 Non-diverging solutions (Kundt’s class) 470
 31.1 Introduction 470
 31.2 The line element for metrics with $\Theta + i\omega = 0$ 470
 31.3 The Ricci tensor components 472
 31.4 The structure of the vacuum and Einstein–Maxwell equation 473
 31.5 Vacuum solutions 476
 31.5.1 Solutions of types III and N 476
 31.5.2 Solutions of types D and II 478
 31.6 Einstein–Maxwell null fields and pure radiation fields 480
 31.7 Einstein–Maxwell non-null fields 481
 31.8 Solutions including a cosmological constant Λ 483
32 Kerr–Schild metrics

32.1 General properties of Kerr–Schild metrics 485
 32.1.1 The origin of the Kerr–Schild–Trautman ansatz 485
 32.1.2 The Ricci tensor, Riemann tensor and Petrov type 485
 32.1.3 Field equations and the energy-momentum tensor 487
 32.1.4 A geometrical interpretation of the Kerr–Schild ansatz 487
 32.1.5 The Newman–Penrose formalism for shearfree and geodesic Kerr–Schild metrics 489

32.2 Kerr–Schild vacuum fields 492
 32.2.1 The case $\rho = - (\Theta + i \omega) \neq 0$ 492
 32.2.2 The case $\rho = - (\Theta + i \omega) = 0$ 493

32.3 Kerr–Schild Einstein–Maxwell fields 493
 32.3.1 The case $\rho = - (\Theta + i \omega) \neq 0$ 493
 32.3.2 The case $\rho = - (\Theta + i \omega) = 0$ 495

32.4 Kerr–Schild pure radiation fields 497
 32.4.1 The case $\rho \neq 0$, $\sigma = 0$ 497
 32.4.2 The case $\sigma \neq 0$ 499
 32.4.3 The case $\rho = \sigma = 0$ 499

32.5 Generalizations of the Kerr–Schild ansatz 499
 32.5.1 General properties and results 499
 32.5.2 Non-flat vacuum to vacuum 501
 32.5.3 Vacuum to electrovac 502
 32.5.4 Perfect fluid to perfect fluid 503

33 Algebraically special perfect fluid solutions 506

33.1 Generalized Robinson–Trautman solutions 506
33.2 Solutions with a geodesic, shearfree, non-expanding multiple null eigenvector 510

34 Application of generation techniques to general relativity 518

34.1 Methods using harmonic maps (potential space symmetries) 518
 34.1.1 Electrovacuum fields with one Killing vector 518
 34.1.2 The group $SU(2,1)$ 521
Contents

34.1.3 Complex invariance transformations 525
34.1.4 Stationary axisymmetric vacuum fields 526
34.2 Prolongation structure for the Ernst equation 529
34.3 The linearized equations, the Kinnersley–Chitre B group and the Hoenselaers–Kinnersley–Xanthopoulos transformations 532
34.3.1 The field equations 532
34.3.2 Infinitesimal transformations and transformations preserving Minkowski space 534
34.3.3 The Hoenselaers–Kinnersley–Xanthopoulos transformation 535
34.4 Bäcklund transformations 538
34.5 The Belinski–Zakharov technique 543
34.6 The Riemann–Hilbert problem 547
34.6.1 Some general remarks 547
34.6.2 The Neugebauer–Meinel rotating disc solution 548
34.7 Other approaches 549
34.8 Einstein–Maxwell fields 550
34.9 The case of two space-like Killing vectors 550

35 Special vector and tensor fields 553
35.1 Space-times that admit constant vector and tensor fields 553
35.1.1 Constant vector fields 553
35.1.2 Constant tensor fields 554
35.2 Complex recurrent, conformally recurrent, recurrent and symmetric spaces
35.2.1 The definitions 556
35.2.2 Space-times of Petrov type D 557
35.2.3 Space-times of type N 557
35.2.4 Space-times of type O 558
35.3 Killing tensors of order two and Killing–Yano tensors 559
35.3.1 The basic definitions 559
35.3.2 First integrals, separability and Killing or Killing–Yano tensors 560
35.3.3 Theorems on Killing and Killing–Yano tensors in four-dimensional space-times 561
35.4 Collineations and conformal motions 564
35.4.1 The basic definitions 564
35.4.2 Proper curvature collineations 565
35.4.3 General theorems on conformal motions 565
35.4.4 Non-conformally flat solutions admitting proper conformal motions 567
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Solutions with special subspaces</td>
<td>571</td>
</tr>
<tr>
<td>36.1</td>
<td>The basic formulae</td>
<td>571</td>
</tr>
<tr>
<td>36.2</td>
<td>Solutions with flat three-dimensional slices</td>
<td>573</td>
</tr>
<tr>
<td>36.2.1</td>
<td>Vacuum solutions</td>
<td>573</td>
</tr>
<tr>
<td>36.2.2</td>
<td>Perfect fluid and dust solutions</td>
<td>573</td>
</tr>
<tr>
<td>36.3</td>
<td>Perfect fluid solutions with conformally flat slices</td>
<td>577</td>
</tr>
<tr>
<td>36.4</td>
<td>Solutions with other intrinsic symmetries</td>
<td>579</td>
</tr>
<tr>
<td>37</td>
<td>Local isometric embedding of four-dimensional Riemannian manifolds</td>
<td>580</td>
</tr>
<tr>
<td>37.1</td>
<td>The why of embedding</td>
<td>580</td>
</tr>
<tr>
<td>37.2</td>
<td>The basic formulae governing embedding</td>
<td>581</td>
</tr>
<tr>
<td>37.3</td>
<td>Some theorems on local isometric embedding</td>
<td>583</td>
</tr>
<tr>
<td>37.3.1</td>
<td>General theorems</td>
<td>583</td>
</tr>
<tr>
<td>37.3.2</td>
<td>Vector and tensor fields and embedding class</td>
<td>584</td>
</tr>
<tr>
<td>37.3.3</td>
<td>Groups of motions and embedding class</td>
<td>586</td>
</tr>
<tr>
<td>37.4</td>
<td>Exact solutions of embedding class one</td>
<td>587</td>
</tr>
<tr>
<td>37.4.1</td>
<td>The Gauss and Codazzi equations and the possible types of (\Omega_{ab})</td>
<td>587</td>
</tr>
<tr>
<td>37.4.2</td>
<td>Conformally flat perfect fluid solutions of embedding class one</td>
<td>588</td>
</tr>
<tr>
<td>37.4.3</td>
<td>Type D perfect fluid solutions of embedding class one</td>
<td>591</td>
</tr>
<tr>
<td>37.4.4</td>
<td>Pure radiation field solutions of embedding class one</td>
<td>594</td>
</tr>
<tr>
<td>37.5</td>
<td>Exact solutions of embedding class two</td>
<td>596</td>
</tr>
<tr>
<td>37.5.1</td>
<td>The Gauss–Codazzi–Ricci equations</td>
<td>596</td>
</tr>
<tr>
<td>37.5.2</td>
<td>Vacuum solutions of embedding class two</td>
<td>598</td>
</tr>
<tr>
<td>37.5.3</td>
<td>Conformally flat solutions</td>
<td>599</td>
</tr>
<tr>
<td>37.6</td>
<td>Exact solutions of embedding class (p > 2)</td>
<td>603</td>
</tr>
<tr>
<td>Part V: Tables</td>
<td></td>
<td>605</td>
</tr>
<tr>
<td>38</td>
<td>The interconnections between the main classification schemes</td>
<td>605</td>
</tr>
<tr>
<td>38.1</td>
<td>Introduction</td>
<td>605</td>
</tr>
<tr>
<td>38.2</td>
<td>The connection between Petrov types and groups of motions</td>
<td>606</td>
</tr>
<tr>
<td>38.3</td>
<td>Tables</td>
<td>609</td>
</tr>
</tbody>
</table>

References | 615 |

Index | 690 |