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1

Introduction:
Donsker’s Theorem, Metric Entropy,
and Inequalities

Let P be a probability measure on the Borel sets of the realRiméth distribu-
tion functionF(x) := P((—o0, x]). Here and throughout, %" means “equals
by definition.” Let X1, X>, --- be i.i.d. (independent, identically distributed)
random variables with distributio®. For eactw = 1,2, --- and any Borel
setd C R, let P,(A4) = % ?:1529(14), whereé, (4) = 14(x). Thenp,

is a probability measure for eacty, - - -, X,, and is called thempirical mea-
sure Let F;, be the distribution function of,. ThenF, is called theempirical
distribution function

The developments to be described in this book began with the Glivenko-
Cantelli theorem, a uniform law of large numbers, which says that with prob-
ability 1, F,, converges toF asn — oo, uniformly on R, meaning that
sup, |(F, — F)(x)| - 0 asn — oo (RAP, Theorem 11.4.2); as mentioned
in the Note at the end of the Preface, “RAP” refers to the author’s Itk
Analysis and Probability

The next step was to consider the limiting behaviowpt= n/2(F, — F)
asn — oo. For any fixedt, the central limit theorem in its most classical
form, for binomial distributions, says that, (1) converges in distribution to
N(O, F(t)(1 — F(1))), in other words a normal (Gaussian) law, with mean 0
and varianceF (¢1)(1 — F(t)). Here alaw is a probability measure defined on
the Borel sets.

For any finite sef” of values oft, the multidimensional central limit theorem
(RAP, Theorem 9.5.6) tells us thay (¢) for # in T converges in distribution
asn — oo to a normal lawN (0, Cr) with mean 0 and covarian@&-(s, t) =
F(s)(1— F(¢)) fors < t.

The Brownian bridge(RAP, Section 12.1) is a stochastic proces@y) de-
fined for 0< ¢ < 1 andw in some probability spac, such that for any finite
setS c [0, 1], y; for ¢ in S have distributionV (0, C), whereC = Cy for
the uniform distribution functiorV(t) = ¢, 0 < ¢t < 1, andt > y;(w) is

1



2 Introduction: Donsker’s Theorem, Metric Entropy, and Inequalities

continuous for almost alb. So the empirical process, converges in distri-
bution to the Brownian bridge composed with namelyt — yr(,, at least
when restricted to finite sets.

It was then natural to ask whether this convergence extends to infinite sets
or the whole interval or line. Kolmogorov (1933) showed that wheris
continuous, the supremum sup, () and the supremum of absolute value,
sup |e, (¢)], converge in distribution to the laws of the same functionalgyof
Then, these functionals ofr have the same distributions as for the Brownian
bridge itself, sinceF’ takesR onto an interval including0, 1) and which may
or may not contain O or 1; this makes no difference to the suprema ginee
y1 = 0. Also,y; — Oalmostsurelyas| 0ort 1 1 by sample continuity; the
suprema can be restricted to a countable dense set such as the rational numbers
in (0, 1) and are thus measurable. Kolmogorov evaluated the distributions of
sup y; and sup|y;| explicitly (see RAP, Propositions 12.3.3 and 12.3.4).

Doob (1949) asked whether the convergence in distribution held for more
general functionals. Donsker (1952) stated and proved (not quite correctly) a
general extension. This book will present results proved over the past few
decades by many researchers, where the collection of half-{ines, x],

x € R, is replaced by much more general classes of sets in, and functions
on, general sample spaces, for example the class of all ellipsoRf in

To motivate and illustrate the general theory, the first section will give a re-
vised formulation and proof of Donsker’s theorem. Then the next two sections,
on metric entropy and inequalities, provide concepts and facts to be used in the
rest of the book.

1.1 Empirical processes: the classical case

In this section, the aim is to treat an illuminating and historically basic special
case. There will be plenty of generality later on. HereRebe the uniform
distribution (Lebesgue measure) on the unit intervall[0 Let U be its dis-
tribution function,U(t) = ¢, 0 <t < 1. LetU, be its empirical distribution
functions andy, := nY2(U, — U) on [0, 1].

It will be proved that as: — oo, «, converges in law (in a sense to be
made precise below) to a Brownian bridge procgs0 < ¢ < 1 (RAP, before
Theorem 12.1.5). Recall that can be written in terms of a Wiener process
(Brownian motion)x,, namelyy; = x; —tx1,0 < ¢t < 1. Or, y; is x; condi-
tioned onx; = 0 in a suitable sense (RAP, Proposition 12.3.2). The Brownian
bridge (like the Brownian motion) is sample-continuous, that is, it can be cho-
sen such that for alb, the functions — y,(w) is continuous on [01] (RAP,
Theorem 12.1.5).



1.1 Empirical processes: the classical case 3

Donsker in 1952 proved that the convergence in law,ofo the Brownian
bridge holds, in a sense, with respect to uniform convergencerirthe whole
interval [0 1]. How to define such convergence in law correctly, however, was
not clarified until much later. General definitions will be given in Chapter 3.
Here, a more special approach will be taken in order to state and prove an
accessible form of Donsker’s theorem.

For a functionf on [0, 1], we have the sup norm

[ flloo := suplf(H)]: 0=t =<1}

Here is the form of Donsker’s theorem that will be the main result of this section.

1.1.1 Theorem Forn = 1,2,---, there exist probability space®, such
that:

(@) On Q,, there existz i.i.d. random variablesXy, - --, X,, with uni-
form distribution in[0, 1]. Letw, be thenth empirical process based
on thesex;;

(b) On 2, a sample-continuous Brownian bridge procdss (¢, w) +—
Y, (¢, w) is also defined;

(€) llay —Yylloo is measurable, and foradl > 0, Pr(jjo, — Yy lloo > 6) — O
asn — oQ.

Notes. (i) Part (c) gives a sense in which the empirical proegssonverges
in distribution to the Brownian bridge with respect to the sup n{prmis.

(ii) It is actually possible to use one probability space on whigh X>, - - -
are i.i.d., whileY,, = (B1 + --- + B,)/+/n, B; being independent Brownian
bridges. Thisisanexample of aavariance principleto be treated in Chapter9,
not proved in this section.

(iif) One can define aliy, andY, on one probability space and makKgall
equal som¢’, although here the joint distributions @f for differentn will be
different from their original ones. Tham, will converge toY in probability
and moreover can be defined so that — Y|l — O almost surely, as will be
shown in Section 3.5.

Proof For a positive integek, let L be the set of + 1 equally spaced points,
Ly = {0,1/k,2/k,---,1} c [0,1].

It will first be shown that both processeg and y,, for large enough and
k, can be well approximated by step functions and then by piecewise-linear
interpolation of their values ohy.
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Given 0< ¢ < 1, takek = k(e) large enough so that
(1.1.2) 4k - exp( — ke?/648) < &/6.

Let Iy .= [j/k, (j+D/k], j =0,---,k — 1 By the representatiomn, =
x; — tx1, we have

Pr{|y: — yj/k| > ¢/6 for somer € I;x} < p1+ p2,
where
p1 = Pr{lx1| > ke/18},  po = Pr{|x; — x;/x| > ¢/9 for somer € I;;}.

Then p; < 2. exp(—k%¢2/648) (RAP, Lemma 12.1.6(b)). Fop», via a re-
flection principle (RAP, 12.3.1) and the fact tHaf, — x,}»>0 has the same
distribution ag{x; },>0 (applied tou = j/ k), we havep, < 4 exp(—ke?/162).
Thus by (1.1.2),

(1.1.3) Pr{ly: — yj/kl > /6
forsome;j =0,---,k—1and some € [} < ¢/3.

Next, we need a similar bound fay, whenr is large. The following will help:

1.1.4 Lemma Given the uniform distributio®/ on [0, 1]:

(@) For 0 < u < 1and any finite sef c [0, 1 — «], the joint distribution
of {U,(u + s) — U, (u)}ses is the same as far = 0.

(b) The same holds fax, in place ofU,.

(c) The distribution oBup|e, (t + j/k) —a,(j/k)|: 0<t <1/k}isthe
same for all;.

Proof (a) LetS = {s;}/”, where we can assumg = 0. It's enough to
consided{ U, (u + s;) — U, (u + Sj—l)};n:r whose partial sums give the desired
guantities. Multiplying byz, we getm random variables from a multinomial
distribution forn observations for the first of m + 1 categories, which have
probabilities{s; — sj_l};?’:ll, wheres,;,+1 = 1 (Appendix B, Theorem B.2).
This distribution doesn’t depend an

(b) Sincea, (u + s) — a, (1) = nY%(U,(u + s) — U, (u) — s), (b) follows
from (a).

(c) The statement holds for finite subsets/gfby (b). By monotone con-
vergence, we can let the finite sets increase up to the countable set of rational
numbers inf;.. Sincel, is right-continuous, suprema over the rationals in
I;; equal suprema over the whole interval (the right endpoint is rational), and
Lemma 1.1.4 is proved. O
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So in bounding the supremum in Lemma 1.1.4(c) we can jake0, and
we need to bound PeY/2|U,(t) — ¢| > ¢ for somer € [0, 1/k]}. Suppose
given a multinomial distribution of numbers,, - - -, n, of sample size: =
n1 + --- + n, in r bins with probabilitiesps, - - -, p,. Then for eacty, the
conditional distribution ofz;,1 givenny, ---,n; is the same as that given
ni + --- + n;, namely a binomial distribution fo# — ny — --- — n; trials
with probability p;1/(pj+1+ - - - + ps) Of success on each (see Appendix B,
Theorem B.3(c)). It follows that the empirical distribution functinhas the
following Markovproperty: if0<# < --- <t; <t < u,thenthe conditional
distribution ofUj, (1) given Uy, (t1), - - -, Uy (¢)), Uy (¢) is the same as that given
U, (t). Specifically, given that,(r) = m/n, the conditional distribution of
U, (u) is that of(m + X)/n where X has a binomial distribution fot — m
trials with success probabilitg: — #)/(1 — ). To be givenU, (¢) = m/n is
equivalent to being given, (1) = nl/z(’;—’ — t), anda,, also has the Markov
property. So the conditional distribution @f (1) givenm = nUj,(¢) has mean

_ aplm u—t u—t _ (M _ 1—u
Hom =1 {n[l 1—t]+1—t " " 1

and variance

n—m)(u—1t)1—u) - u—t -
n(l—1)2 -~ 1—t ~
So, by Chebyshev’s inequality,

Pr{|an@) — um| = 2u™%|m} < 1/4.

If u <1/2,theni > 1. Let0O< 8 < 1. f a,(t) > 8, then — ¢ > §/n%/?

andu, > 8(1l;j;) > §/2, so for anyy > § (such that Pl (t) = y} > 0),

8
Pr{an(u) > 5~ 2u'/?

o (t) = J/} > 3/4.
(For such ay, y = n%2(2 — 1) for some integem.) If u < §2/64, then
u <1/2 and

Pria, (u) > §/4 | ay(t) =y} = 3/4.

Letu = 1/kands = ¢/4. Thenby (1.1.2), sinae * < 1/24 impliesx > 2,
we haveu < §2/64, so

Pria, (1/k) > /16| o, (1) = y} = 3/4 for y > ¢/4A.

Now take a positive integer and letr be the smallest value of/(kr),
if any, for j = 1,...,r, for which «,(t) > ¢/4. Let 4, be the event
that such aj exists. Letd,; := {r = j/(kr)}. Then4, is the union of the



6 Introduction: Donsker’s Theorem, Metric Entropy, and Inequalities

disjoint sets4,; for j = 1,---,r. For each suchi, by the Markov property,
Pria,(1/k) > /16| A,;} > 3/4. Thus

Pria,(1/k) > /16| 4,} > 3/4.
Letr — oo. Then by right continuity ot), ande,,, we get

Pr{a, (1) > ¢/4 for somer € [0, 1/k]}

IA

3 Pria, (1/k) > /16}.
Likewise,

Pr{a, (t) < —¢/4 for somet € [0, 1/k]}

IA

2 Pria, (1/k) < —e/16).
Thus by Lemma 1.1.4(c),
(1.1.5) Pr{ja,(t) —a,(j/k)| > &/4 for somet € I

and; =0,1,---,k—1} < (4k/3)Pr(|la,(1/k)| > £/16).

Asn — oo, for our fixedk, by the central limit theorem and RAP, Lemma
12.1.6(b),

Pr{la, (1/ k)| > £/16} — Pr{|y1/x|l > /16} < 2~exp( —k£2/512).
So forn large enough, say > no = no(¢), recalling thatc = k(e),
Prila, (1/k)| > ¢/16) < 3-exp( — ke?/512).
Then by (1.1.5) and (1.1.2), far> no,
(1.1.6) Prlla, (1) — an (j/K)| > €/4
forsomej =0,---,k—1andf € I} < ¢/6.

As mentioned previously, the law, s8y(«;,), of {«, (i/k)}f.‘zo converges by the
central limit theorem iR+ to that of{y; /x}*_,, sayLk(y). OnRE+L put the
metricdoo (x, ¥) := |x — y|eo := Max |x; — y;|, which of course metrizes the
usual topology. Since convergence of laws is metrized by Prokhorov’s metric
o (RAP, Theorem 11.3.3), for large enough, say > n1(¢) > no(e), we have
o (Li(ay), Lir(»)) < €/6. Then by Strassen’s theorem (RAP, Corollary 11.6.4),
there is a probability measuyg, on R**1 x R**1 such that for(X, Y) with
L(X,Y) = u,, we have

L(X) = Li(an), L(Y) = Li(y),
a.1.7)

andu,{(x,y) . |x — yloo > £/6} < ¢/6

(RAP, Section 9.2).
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Let Liby (for “linear in between”) be the function frof**? into the space
C[0, 1] of all continuous real functions on [Q] such thatlLibg(x)(j/k) =
xj, j = 0,---,k, andLibg(x)(-) is linear (affine) on each closed interval
Lk = [j/k, G+ /K], j =0,---,k — 1. For anyx, y € RF1 Lib(x) —
Libx(») is also linear on eacliy, so it attains its maximum, minimum, and
maximum absolute value at endpoints. So for the supremum fgig, =
SURy<,<1 |/ (x)] on C[O, 1], Liby is an isometry into:

ILib (x) — Libg (Moo = |x — yloo forallx, y e R¥L

SinceC|0, 1]is aseparable metric space (e.g., RAP, Corollary 11.2/5)) +—
| f — glloo is jointly measurable inf, g € C[0, 1] (RAP, Proposition 4.1.7).
So, from (1.1.7) we get

(1.1.8) pnflILibe(x) — Libg () lloo > €/6} < /6.

GIY_ € RML

For any real-valued functionf on [0, 1], let ;. (f)
Thensn (Libg(x)) = x for all x € R,

For a sample-continuous Brownian bridge prodess) — y;(w), 0 <t <
1, the map

o~ {t— yw): 0<t =<1} € C[0,1]

is measurable for the Borel-algebra onC[0, 1] (by a simple adaptation of
RAP, Proposition 12.2.2). (Recall that in any topological space, the Borel
o-algebra is the one generated by the open setslx;Ih — x;| < ¢ then
[Libg(x)(#) — x| < e forall ¢ € I;;. It follows from (1.1.3) that

(1.1.9) Pr{|ly — Liby (mk (W) lloo > €/3} < &/3,

where for eaclw, we have a function: ¢t — y,(w), 0 <t < 1.

We can take the probability space for eaghprocess as the unit cubdé,
where then i.i.d. uniform variables in definingj, andw,, arexs, - - -, x,, with
x=(x1,--+,x,) € I". Then

A x e e (GIOY,

is measurable froni” into R¥t1 and has distributiors (e, ) on R¥+1, Also,
x > Libg(A4x(x)) is measurable frond” into C[0, 1].

The next theorem will give a way of linking up or “coupling” processes.
Recall that aPolish space is a topological space metrizable by a complete
separable metric.

1.1.10 Theorem(Vorob’ev-Berkes-Philipp)Let X, Y and Z be Polish spaces
with Borelo-algebras. Letr be alaw onX x Y and letg be alaw onY x Z.



8 Introduction: Donsker’s Theorem, Metric Entropy, and Inequalities

Letmy(x, y) := yandty(y,z) := yforall (x, y,z) € X x Y x Z. Suppose
the marginal distributions of and 8 on Y are equal, in other wordg =
o on{l =8 o‘l,';l onY. Letwio(x, v, z) := (x, y) andmos(x, y, 2) = (3, 2).
Then there exists alawon X x ¥ x Z such thay o5 = « andy omr,3 = B.

Proof There exist conditional distributions for « on X giveny € Y, so that
for eachy € Y, «y is a probability measure of, for any Borel se#d C X, the
function y — «,(4) is measurable, and for any integrable functjofor «,

/fda =/ S(x, y)day,(x)dn(y)

(RAP, Section 10.2). Likewise, there exist conditional distributishon Z
for 8. Letx andz be conditionally independent given In other words, define
a set functiory on X x Y x Z by

y(C) = / / / Lo (x, v, 2) da(x) dB,(2) dn ().

The integral is well-defined if

(@) C=U x V x w for Borel setaU, V,andW in X, Y, andZ, respec-
tively;

(b) C is a finite union of such sets, which can be taken to be disjoint (RAP,
Proposition 3.2.2 twice); or

(c) Cis any Borel setinX x Y x Z, by RAP, Proposition 3.2.3 and the
monotone class theorem (RAP, Theorem 4.4.2).

Also, y is countably additive by monotone convergence (for all three inte-
grals). Soy isalaw onX x Y x Z. Clearlyy o 7y, = @ andy o 7y = f.
O

Now, let’s continue the proof of Theorem 1.1.1. The functign /) +—
lan — flloo IS jointly Borel measurable fat € [ and f € CJ[O0, 1]. Also,
u > Liby(x) is continuous and thus Borel measurable fifri! into C[0, 1].
S0 (x, u) — |ley — Libg ()]s is jointly measurable od” x R¥+1, (This is
true even thoughy, ¢ C[0, 1] and the functions — «,(¢) for differentw
form a nonseparable space for ||oo.) Thusx +— |, — Libg(A4(x))]lco iS
measurable oi”. From (1.1.6), we then have

(1.1.11) Pr{lla, — Libg(4r(x))llec > €/2} < g/6.

Apply Theorem 1.1.10 ta X, Y, Z) = (I", R¥1 RF1) with the law of
(x, Ax(x)) on I" x R¥t1 andpu, from (1.1.7) onR%*+1 x R¥*+1 both of which
induce the lawCy («,) on Y = R¥*1 to get a lawy, .
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Then apply Theorem 1.1.10, this time (&, ¥, Z) = (I" x Rt Rk
C[0, 1)), with y,, on X x Y and the law of7x(y), y) onY x Z, wherey is the
Brownian bridge.

We see that there is a probability measgreon 1" x C[0, 1] such that if
LV, Yy) = &, thenl(Vy,) isuniformoni”, L(Y,) isthe law of the Brownian
bridge, and if we take,, = «,(-)(V,,), then forn > n1(¢) defined after (1.1.6),

llotn — Libg (i (o)) ll oo

+ lILibg (i (n ) — Libg (e (Yn)) lloo
+ IILibg (7 (Yn)) — Yalloo

< ¢/2+¢/6+¢/3<¢

llan — Yalloo

IA

except on a set with probability at most- § + § < &, by (1.1.11), (1.1.8),
and (1.1.9), respectively.

LetQ, ;= I" x C[0,1], n > 1. Forr = 1,2,---, letn, = n1(1/r).
Let N, be an increasing sequence with > n, for all ». Forn < Nj,
defineuw, as in (1.1.7) but with 1 in place @f/6 (both times), so that it always
holds: one can takg, as the product measu® («,) x Li(y). Defineg,
on , as above, but with 1 in place ef m form = 2,4, or 6 in (1.1.6) and
(1.1.11). ForN, < n < N,41, defineu, and¢, as fore = 1/r. Then
Pr(lay, — Yulloo > 1/r) < 1/r forn > N,, r > 1, and Theorem 1.1.1 is
proved. U

Remarks. Itwould be nice to be able to say that converges to the Brownian
bridgey inlaw in some spac& of functions with supremum norm. The standard
definition of convergence in law, at leastSifs a separable metric space, would
say thatk H(«,) — E H(y) for all bounded continuous real functioris on

S (RAP, Section 9.3). Donsker (1952) stated this when continuity is assumed
only at almost all values af in C[0, 1]. But then,H could be nonmeasurable
away from the support of, and £ H («,,) is not necessarily defined. Perhaps
more surprisingly,E H(a,) may not be defined even iff is bounded and
continuous everywhere. Consider for example- 1. Then in the set of all
possible functiond/; — U, any two distinct functions are at distance 1 apart
for || - loo. SO the set and all its subsets are complete, closed, and discrete for
|l - lloo- If the image of Lebesgue (uniform) measure onl[Pby the function

x = (t = Lis, — t) were defined on all Borel sets foir- || in its range,

or specifically on all complete, discrete sets, it would give an extension of
Lebesgue measure to a countably additive measure on all subsetslyf [0
Assuming the continuum hypothesis, which is consistent with the other axioms
of set theory, such an extension is not possible (RAP, Appendix C).
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So in a nonseparable metric space, such as a space of empirical distribution
functions with supremum norm, the Borelalgebra may be too large. In
Chapter 3 it will be shown how to get around the lack of Borel measurability.

Here is an example relating to the Vorob’ev theorem (1.1.10) ML et Y =
Z ={-11}. In X x Y x Z let each coordinate, y, z have the uniform
distribution giving probability 12 each to—1, 1. Consider the laws on the
products of two of the three spaces such that —x, z = —y, andx = —z.

There exist such laws having the given marginals\ory andZ. But there is
no law onX x Y x Z having the given marginalsolix Y, Y x Z, andZ x X,
since the three equations together yield a contradiction.

1.2 Metric entropy and capacity

The word “entropy” is applied to several concepts in mathematics. What they
have in common is apparently that they give some measure of the size or com-
plexity of some set or transformation and that their definitions involve loga-
rithms. Beyond this rather superficial resemblance, there are major differences.
What are here called “metric entropy” and “metric capacity” are measures of the
size of a metric space, which must be totally bounded (have compact comple-
tion) in order for the metric entropy or capacity to be finite. Metric entropy will
provide a useful general technique for dealing with classes of sets or functions
in general spaces, as opposed to Markov (or martingale) methods. The latter
methods apply, as in the last section, when the sample spRcarid the class
C of sets is the class of half-lings-oco, x], x € R, so thatC with its ordering
by inclusion is isomorphic t&® with its usual ordering.

Let (S, d) be a metric space and a subset of5. Lete > 0. AsetF C S
(not necessarily included i) is called are-net for 4 if and only if for each
x € A,thereisay € Fwithd(x, y) <. LetN(e, 4, S, d) denote the minimal
number of points in ap-netinS for 4. HereN (e, 4, S, d) is sometimes called
acovering numberlt’s the number of closed balls of radiasnd centers i
needed to coved.

For any setC C S, define thediameterof C by

diamC := supd(x, y): x,y € C}.

Let N(e, C, d) be the smallest such thaC is the union of: sets of diameter at
most 2. Let D(e, 4, d) denote the largest such that there is a subsBtc 4
with F havingn members and (x, y) > ¢ whenever # y for x andyin F.
Then, in a Banach spac®,2¢, 4, d) is the largest number of disjoint closed
balls of radiug that can be “packed” intd and is sometimes called a “packing
number.”
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The three quantities just defined are related by the following inequalities:

1.2.1 Theorem For anye > 0 and set4 in a metric spaces with metricd,
D(2¢,4,d) < N(e,A4,d) < N(e, 4,8,d)
N(e, A, 4,d) < D(e, 4,d).

IA

Proof The first inequality holds since a set of diametercan contain at
most one of a set of points more than &art. The next holds because any
ball B(x,¢) := {y: d(x, y) < ¢} is a set of diameter at most 2 The third
inequality holds since requiring centers to bediiis more restrictive. The last
holds because a sét of points more thams apart, with maximal cardinality,
must be are-net, since otherwise there would be a point more thaway
from each point ofF", which could be adjoined t&’, a contradiction unlesg

is infinite, but then the inequality holds trivially. O

It follows that as | 0, when all the functions in the theorem gaxtounless
S is a finite set, they have the same asymptotic behavior up to a factor ef 2 in
So it will be convenient to choose one of the four and make statements about
it, which will then yield corresponding results for the others. The choice is
somewhat arbitrary. Here are some considerations that bear on the choice.

The finite set of points, whether more thamapart or forming ar-net, are
often useful, as opposedto the sets inthe definitiacn@f 4, d). N(e, 4, S, d)
depends not only od but on the larger space Many workers, possibly for
these reasons, have preferféce, 4, 4, d). But the latter may decrease when
the set4 increases. For example, ldtbe the surface of a sphere of radius
around 0 in a Euclidean spaSeand letB := 4 U {0}. ThenN(e, B, B,d) =
1 < N(g,4,4,d) for 1 < ¢ < 2. This was the reason, apparently, that
Kolmogorov chose to us¥ (¢, 4, d).

In this book | adoptD(e, 4, d) as basic. It depends only ofy not on the
larger spaces, and is nondecreasing ih. If D(e, 4, d) = n, then there are
points which are more thanapart and at the same time form axnet.

Now, thee-entropyof the metric spacé4, d) is defined adi (e, 4,d) =
log N (e, 4, d), and thes-capacityas logD(e, 4, d). Some other authors take
logarithms to the base 2, by analogy with information-theoretic entropy. In this
book logarithms will be taken to the usual basevhich fits for example with
bounds coming from moment-generating functions as in the next section, and
with Gaussian measures as in Chapter 2. There are a number of interesting sets
of functions whereN (¢, 4, d) is of the order of magnitude exp ") ase | 0,
for some power > 0, so that the-entropy, and likewise the-capacity, have
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the simpler ordes™". Butin other cases beloul)(e, 4, d) is itself of the order
of a power of Je.

1.3 Inequalities

This section collects several inequalities bounding the probabilities that random
variables, and specifically sums of independent random variables, are large.
Many of these follow from a basic inequality of S. Bernstein and P. L. Cheby-
shev.

1.3.1 Theorem For any real random variableX ands € R,
PriX >t} < inf,sge “Ee"X.
Proof For any fixedu > 0, the indicator function of the set whepé > ¢

satisfies Ly < €=, so the inequality holds for a fixed; then take
infuzo. D

For any independent real random variablkés -- -, X,,, let S, = X1 +
4 X,

1.3.2 Bernstein’s inequality Let X1, X, ---, X, be independent real ran-
dom variables with meaf. Let0 < M < oo and suppose thatX;| < M
almost surely forj = 1,---,n. Let sz = Var(X;) and t? := Var(s,) =

02+ .-+ 02 Then for anyK > 0,
(1.3.3)  Pr{|S,| > kn*?} < 2.exp(—nKk?/(2t? +2Mn/?K/3)).

Proof We can assume tha),2 > 0, since otherwiseS, = 0 a.s. (where a.s.
means almost surely) and the inequality holds. ForapyOand; =1, -- -, n,

(1.34)  EexpuX;) = 1+u’0?F;/2 < exp(o?Fju®/2),

where Fj = Zajfz >, ur*ZEX;/r!, or Fj =0 if ajz = 0. Forr > 2,
|X;|" < X_].ZM”_Z a.s., SOF; < 2320, (Mu)" =2/r! < 300, (Mu/3)"~2 =
1/(1— Mu/3)forall j =1,---,nif0 <u < 3/M.

Letv := Kn¥/? andu := v/(z? + Mv/3), so thatv = t2u/(1 — Mu/3).
Then O< u < 3/M. Thus, multiplying the factors on the right side of (1.3.4)
by independence, we have

EexpusS,) < exp(tu®/2(1— Mu/3)) = expuv/2).
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So by Theorem 1.3.1, P$,, > v} < e “*/? and
e U2 = exp( — v2/(2r,,2 + 2Mv/3))
exp( — nK?/(2t2 + 2MKn'/?/3)). O

Here are some remarks on Bernstein’s inequality. Note that for fiead
M, if X; are i.i.d. with variance 2, then as: — oo, the bound approaches the
normal bound 2 exp(—K?2/(252)), as given in RAP, Lemma 12.1.6. More-
over, this is true even iM = M, — oo asn — oo while K stays constant,
provided thatM, /nY/2 — 0. Sometimes the inequality can be applied to
unbounded variables, replacing them by “truncated” ones, say replacing an
unboundedf by fys where fy/(x) == f(X) 1) rx)|<m)-

Next, letsq, s2, - - -, bei.i.d. variables wittP(s; = 1) = P(s; = —1) = 1/2.
Such variables are called “Rademacher” variables. We have the following
inequality.

1.3.5 Proposition(Hoeffding) For anyt > 0 and reala;,

pr{ Z . } < exp(_fz / <22 ))

Proof Since ¥(2n)! < 27"/nl for n = 0,1,---, we have cosh =
(" + e ¥)/2 < exp(x2/2) for all x. Apply Theorem 1.3.1, where by cal-
culus, inf, exp(—ur + 3 7_; aj?uz/Z) is attained at = 7/ )7, af, and the
result follows. O

Here are some remarks on Proposition 1.3.5.1hetl?, - - -, be independent
variables which are symmetric, in other wordshas the same distribution as
—Y; forall j. Lets; be Rademacher variables independent of each other and of
alltheY;. Thenthe sequende;Y;}(;>1 has the same distribution &&;}{,>1;.

Thus to bound the probability th{tjj’zl Y; > K, forexample, we can consider
the conditional probability for each, - - -, Y,

Pr{ Y sY > K‘Yl,n-,Yn} < exp(—K2/<22Yj2)>
j=1 Jj=1

by 1.3.5. Thento bound the original probability, integrating over the distribution
of the ¥;, one just needs to have bounds on the distributiop ¢f ; sz, which
may simplify the problem considerably.
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The Bernstein inequality (1.3.2) used variances as well as bounds for centered
variables. The following inequalities, also due to Hoeffding, use only bounds.
They are essentially the best that can be obtained, under their hypotheses, by
the moment-generating function technique.

1.3.6 Theorem(Hoeffding) Let X3, ---, X, be independent variables with
0< X; <1forall j. LetX := (X1 +---+ X,)/n andu := EX. Then for
O<t<1—upu,

i = {(“if)ﬂﬂ <1i;lit)l_u_t}n

_nt? _ 9,42
e nt<g(i) <e 2nt7

where

2(w) (1—-2w)~tog((1—w)/u)  for 0 < <1/2, or

1/Cpd— ) for 1/2<p =<1

Remarks. Fort >1—pu, P(X —p >1t) <Pr(X > 1) =0. Fort <0, the
given probability would generally be of the order of2lor larger, so no small
bound for it would be expected.

Proof Foranyv > 0, the functionf(x) := e~ is convex (its second derivative

is positive), so any chord lies above its graph (RAP, Section 6.3). Specifically,
if0 < x < 1,thene”™™ < 1—x+xe". Taking expectations givesexp(v X;) <

1— p;+ pje’, wheren; := EX;. (Note that the latter inequality becomes
an equation for a Bernoulli variablg;, taking only the values ,d.) Let

Sy =X1+ -+ X,. Then

Pr(X—u=>t) = PKS, — ES, > nt)

IA

Eexp(v(S, — ES, —nt))
e HITT_) E exp(v X))
< e—nv(t+u)n;l:l(1_ i+ l/«jev)-

The following fact is rather well known (e.g., RAP (5.1.6) and p. 276):

1.3.7 Lemma For any nonnegative real numbers, - - -, t,, the geometric
mean is less than or equal to the arithmetic mean, in other words

(titz - t)Y" < (t1 4+ ta)/n.
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Applying the lemma gives

n
Pr{)_(—/,e>t} < —"U(H-M)( Zl Wi+ uje )

< efnv(t+u)(1_u+luev) )

To find the minimum of this fow > 0, note that it becomes large as—> oo
sincet + 1 < 1, while setting the derivative with respect toequal to 0
gives a single solution, where4 u + pe¥ = pe’/(t + u) ande’ = 1+
t/(u(1—p—1)). Substituting these values into the bounds gives the first, most
complicated bound in the statement of the theorem. This bound can be written
asP(X —pu>1) < exp(—nt?G(t, n)), where

n+t w+t 1—p—t 1—p—t
G(t,n) = 2 IOQ<T>+<t—2>|Og<ﬁ>'

The next step is to show that miy .1 G (¢, 1) = g(u) as defined in the state-
ment of the theorem. For@ x < 1 let

Hx) = (1— —> log(1— x).

In dG (¢, n)/9t, the terms not containing logarithms cancel, giving

20G(t, W) 2. it
t—at [1 t(l M)}Iog(l —1—M>

[h—(wz)]log(l—ﬁ)
H(liu)_H<ut+r)‘

To see thatH is increasing inx for 0 < x < 1, take the Taylor series of
log(1 — x) and multiply by 1— )% to get the Taylor series aof/ around O,
all whose coefficients are nonnegative. Only the first order term is 0. Thus
9G/ot > 0ifand only ifz/(1 — ) > t/(u + ), or equivalentlyr > 1 — 2.
Soifu < 1/2,thenG (¢, n), for fixed u, has a minimum with respect to> 0
atr = 1— 2u, giving g(r) for that case as stated. Onif> 1/2, thenG (¢, i)
isincreasing in > 0, with lim, 0 G (¢, n) = g(w) as stated for that case, using
the first two terms of the Taylor series aroung 0 of each logarithm.

Now to get the final bound exp-2n2), it needs to be shown that the mini-
mum ofg(u) forO < u < 1lis2. Foru > 1/2, gisincreasing (its denominator
is decreasing), ang(1/2) = 2. Foru < 1/2, lettingw := 1 — 2u, we get
g(w) = Llog(32). From the Taylor series of lag + w) and log1l — w)
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aroundw = 0, we see thag is increasing inw, and so decreasing ja, and
converges to 2 ag — 1/2. Thusg has a minimum atc = 1/2, which is 2.
The theorem is proved. O

For the empirical measurg,, if 4 is a fixed measurable set,P,(A) is
a binomial random variable, and in a multinomial distribution, eachas a
binomial distribution. So we will have need of some inequalities for binomial
probabilities, defined by

Bk,n,p) = Y (’?)p/’q”‘ﬁ 0<gi=1-p=1,
o<j=k */
Elk,n, p) = Z <’;)qu»1/.

k<j<n
Heref is usually, but not necessarily, an integer. Thus; independent trials
with probability p of success on each trial, so thais the probability of fail-
ure, B(k, n, p) is the probability of at most successes, anbl(k, n, p) is the
probability of at leask successes.

1.3.8 Chernoff-Okamoto inequalities We have

k n—k
(1.3.9) E(k,n,p) < (%) (n”_"k> if k> np,

(2.3.10) B(k,n, p) < EXp( — (np — k)z/(anq)) if k<np<n/2

Proof These facts follow directly from the Hoeffding inequality 1.3.6. For
(1.3.10), note thaB(k,n, p) = E(n — k,n, 1 — p) and apply thez(u) case
with u =1— p. |

Ifin (1.3.9) we setx := ng/(n — k) < e*~1, it follows that
(1.3.11) E(k,n, p) < (np/k)*e* "7 if k> np.
The next inequality is for the special valpe= 1/2.

1.3.12 Proposition If k£ < n/2then2" B(k, n, 1/2) < (ne/k)~.

Proof By (1.3.9) and symmetnB(k, n, 1/2) < (n/2)"k*(n — k)¥". Let-
ting y :=n/(n — k) < e~1 then gives the result. O

A form of Stirling’s formula with error bounds is:
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1.3.13 Theorem For n = 1,2, .-, < yl(e/n)"(27n)~12 <
1/12n
e .

Proof See Feller (1968), vol. 1, Section 1.9, p. 54. O

For any realx let x* := max(x, 0). A Poissonrandom variable: with
parameter has the distribution given by Pr = k) = e~"”m*/k! for each
nonnegative integet.

1.3.14 Lemma For any Poisson variable with parametem > 1,

E(z—m)" > mY?/8.
Proof We haveE(z — m)* = Y ,_, e "mk(k — m)/k\. Let j := [m],
meaning; is the greatest integer with < m. Then by a telescoping sum

(whichis absolutely convergenty(z—m)* = e " m/*1/;1. Then by Stirling’s
formula with error bounds (Theorem 1.3.13),

EG—m" > e "m/M(e/j)! 2nj) Y2 M)

(mj+1/jj+%)6—13/12(27_[)—1/2 > ml/?/8 0

v

In the following two facts, letYy, Xo, - - -, X, be independent random vari-
ables with values in a separable normed spaadth norm| - ||. (Such spaces
are defined, for example, in RAP, Section 5.2.) Egt= X3 + --- + X; for
j — 1, SN

1.3.15 Ottaviani’s inequality If for somex > 0 andc with0 < ¢ < 1, we
haveP(||S, — Sjll > @) <cforall j=1,---,n,then

P{max<, |S;ll = 2¢} < P([S:]l = @)/(1 = ¢).
Proof The proofin RAP, 9.7.2, fa§ = R¥, works for any separable normé&d
Here(x, y) = |lx — y| is measurableS x S — R by RAP, Proposition 4.1.7.

O
When the random variable; are symmetric, there is a simpler inequality:

1.3.16 P.Lévy'sinequality Given a probability spac&?, P)andacountable
setY, let X1, X>,--- be stochastic processes defineds@indexed byy, in
other words for eaclty andy € ¥, X;(y)(-) is a random variable ors2. For
any bounded functiof on Y, let | flly := sup| f(»)|: y € Y}. Suppose that
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the processes; are independent, withi .X;||y < oo a.s., and symmetric, in
other words for eacly, the random variable$—X;(y): y € Y} have the same
joint distribution as{X;(y): y € Y}. LetS, := X3 +---+ X,. Then for each
n,and M > 0,

P (max <, ISjlly > M) < 2P (ISylly > M).

Notes. Each||S;|y is a measurable random variable becalise countable.
Lemma 9.1.9 treats uncountallfe The norm on a separable Banach space
(X, |- 1) can always be written in the foriin ||y for Y countable, via the Hahn-
Banach theorem (apply RAP, Corollary 6.1.5, to a countable dense set in the
unit ball of X to get a countable norming subgein the dualX’ of X, although

X’ may not be separable). On the other hand, the preceding lemma applies to
some nonseparable Banach spaces: the space of all bounded functions on an
infinite Y with supremum norm is itself nonseparable.

Proof Let M;(w) := max;< ||S;|ly. Let Cy be the disjoint eventgM;_1 <
M < My}, k=1,2,---, where we setMy := 0. Thenfor 1< m < n,
2[[Smlly < ISully + 12Sm — Sully. SO if |Sully > M, then||S,|ly > M or
128, —Suly > M orboth. The transformation which interchangésand— X;
justform < j < n preserves probabilities, by symmetry and independence.
Thens, is interchanged with &, — S,, while X; are preserved fof < m. So
P(Cn N {ISully > M}) = P(Co N {I1280 — Sully > M}) = P(Cy)/2, and
P(My > M) =31 P(Cy) <2P(IS,lly > M). O

Problems
1. Find the covariance matrix d@, 1/4, 1/2, 3/4, 1} of

(a) the Brownian bridge process;
(b) Us — U. Hint: Recall that:¥/2(U, — U) has the same covariances
aSy,.

2. let0< ¢t < u < 1. Letwa, be the empirical process for the uniform
distribution on [Q 1].

(a) Show that the distribution af,(¢) is concentrated in some finite
set4,.

(b) Let (¢, y,u) = E(a,(u)|a,(t) = y). Show that for any in A4,
(u, f(¢, y, u)) is on the straight line segment joiniig y) to (1, 0).
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3. Let(S, d) be a complete separable metric space. [Lée a law onS x S
and lets > 0 satisfy

n({(x, y): d(x,y) > 28}) < 38.

Let mo(x, y) '= yand P := pom, . Let Q be alaw onS such that

o(P, Q) < & where p is Prokhorov's metric. OnS x § x S let
m12(x, y, z) := (x, y) andms(x, y, z) := z. Show that there exists a law
onS x § x Ssuchthaw o 7y = pu, @ o3t = O, and

af{(x,y,z): d(x,z) > 38}) < 4.

Hint: Use Strassen’s theorem, which implies that for somelam S x S,
if L(Y,Z) =v,thenl(Y) = P, L(Z) = Q,andv({d(Y, Z) > §}) < 4.
Then the Vorob’ev-Berkes-Philipp theorem applies.

4. Let4 =B =C=1{0,1}. On4 x B, let

w = (80,0 + 28(1,0) + 580,1) + 81.1)) /9.

OnB x C, letv := [8(0,0) + §(1,0) + 8(0,1) + 35(1,1]/6. Find a lawy on
Ax BxCsuchthatify = L(X, 7Y, Z),thenl(X,Y) = pandL(Y, Z) = v.

5. Let/ = [0, 1] with usual metricd. Fore > 0, evaluateD(e, I, d), N (e,
I,d), andN (e, I, I,d). Hint: The ceiling function[x] is defined as the
least integer- x. Answers can be written in terms pf].

6. For a Poisson variablg” with parameten. > 0, that is, P(X = k) =
e *Af/k for k = 0,1,2,---, evaluate the moment-generating function
Ee'X for all t. For M > 4, find the bound for RtX > M) given by the
moment-generating function inequality (1.3.1).

Notes

Notes to Section 1.1. The contributions of Kolmogorov (1933), Doob (1949),
and Donsker (1952) were mentioned in the text.

When it was realized that the formulation by Donsker (1952) was incorrect
because of measurability problems, Skorokhod (1956) — see also Kolmogorov
(1956) — defined a separable metfion the spac®|0, 1] of right-continuous
functions with left limits on [Q 1], such that convergence fdrto a continuous
function is equivalent to convergence for the sup norm, and the empirical pro-
cess, converges in law iD[0, 1] to the Brownian bridge; see, for example,
Billingsley (1968, Chapter 3).

The formulation of Theorem 1.1.1 avoids the need for the Skorokhod topol-
ogy and deals with measurability. | don’'t know whether Theorem 1.1.1 has



20 Introduction: Donsker’s Theorem, Metric Entropy, and Inequalities

been stated before explicitly, although it is within the ken of researchers on
empirical processes.

In Theorem 1.1.10, the assumption thgtY andZ are Polish can be weak-
ened: they could instead be any Borel sets in Polish spaces (RAP, Section 13.1).
Still more generally, since the proof of Theorem 10.2.2 in RAP depends just on
tightness, it is enough to assume thaty and Z are universally measurable
subsets of their completions, in other words, measurable for the completion of
any probability measure on the Borel sets (RAP, Section 11.5). Shortt (1983)
treats universally measurable spaces and considers just what hypotheses on
X, Y andZ are necessary.

Vorob’ev (1962) proved Theorem 1.1.10 for finite sets. Then Berkes and
Philipp (1977, Lemma Al) proved it for separable Banach spaces. Their proof
carries over to the present case. Vorob’ev (1962) treated more complicated
families of joint distributions on finite sets, as did Shortt (1984) for more general
measurable spaces.

Notes to Section 1.2. Apparently the first publication ogrentropy was the
announcement by Kolmogorov (1955). Theorem 1.2.1, and the definitions of
all the quantities in it, are given in the longer exposition by Kolmogorov and
Tikhomirov (1959, Section 1, Theorem IV).

Lorentz (1966) proposed the name “metric entropy” rather thagritropy,”
urging that functions should not be named after their arguments, as functions of
a complex variable are not called 2-functions.” The name “metric entropy”
emphasizes the purely metric nature of the concept. Actualgntropy” has
been used for different quantities. Posner, Rodemich, and Rumsey (1967, 1969)
define arz, § entropy, for a metric spacewith a probability measur® defined
on it, in terms of a decomposition &finto sets of diameter at mostand one
set of probability at most. Also, Posner et al. defireentropy as the infimum
of entropies— Y, P(U;) log(P(U;)) where theU; have diameters at most
So Lorentz's term “metric entropy” seems useful and will be adopted here.

Notes to Section 1.3. Sergei Bernstein (1927, pp. 159-165) published his
inequality. The proof given is based on Bennett (1962, p. 34) with some in-
correct, but unnecessary steps (his (3), (4), removed as suggested by Giné
(1974). For related and stronger inequalities under weaker conditions, such as
unbounded variables, see also Bernstein (1924, 1927), Hoeffding (1963), and
Uspensky (1937, p. 205).

Hoeffding (1963, Theorem 2) implies Proposition 1.3.5. Chernoff (1952,
(5.11)) proved (1.3.9). Okamoto (1958, Lemma’}(lproved (1.3.10). In-
equality (1.3.11) appeared in Dudley (1978, Lemma 2.7) and Lemma 1.3.12 in
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Dudley (1982, Lemma 3.3). On Ottaviani’s inequality (1.3.15) for real-valued
functions, see (9.7.2) and the notes to Section 9.7 in RAP. The P. Lévy inequality
(1.3.16) is given for Banach-valued random variables in Kahane (1985, Section
2.3). For the case of real-valued random variables, it was known much earlier;
see the notes to Section 12.3 in RAP.
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