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1

Introduction:
Donsker’s Theorem, Metric Entropy,

and Inequalities

LetP be a probability measure on the Borel sets of the real lineR with distribu-
tion functionF(x) := P((−∞, x]). Here and throughout, “:=” means “equals
by definition.” LetX1, X2, · · · be i.i.d. (independent, identically distributed)
random variables with distributionP . For eachn = 1, 2, · · · and any Borel
setA ⊂ R, let Pn(A) := 1

n

∑n
j=1 δXj

(A), whereδx(A) = 1A(x). ThenPn

is a probability measure for eachX1, · · · , Xn and is called theempirical mea-
sure. LetFn be the distribution function ofPn. ThenFn is called theempirical
distribution function.

The developments to be described in this book began with the Glivenko-
Cantelli theorem, a uniform law of large numbers, which says that with prob-
ability 1, Fn converges toF as n → ∞, uniformly on R, meaning that
supx |(Fn − F )(x)| → 0 asn → ∞ (RAP, Theorem 11.4.2); as mentioned
in the Note at the end of the Preface, “RAP” refers to the author’s bookReal
Analysis and Probability.

The next step was to consider the limiting behavior ofαn := n1/2(Fn − F )

asn → ∞. For any fixedt , the central limit theorem in its most classical
form, for binomial distributions, says thatαn(t) converges in distribution to
N(0, F (t)(1 − F(t))), in other words a normal (Gaussian) law, with mean 0
and varianceF(t)(1 − F(t)). Here alaw is a probability measure defined on
the Borel sets.

For any finite setT of values oft , the multidimensional central limit theorem
(RAP, Theorem 9.5.6) tells us thatαn(t) for t in T converges in distribution
asn → ∞ to a normal lawN(0, CF ) with mean 0 and covarianceCF (s, t) =
F(s)(1 − F(t)) for s ≤ t .

TheBrownian bridge(RAP, Section 12.1) is a stochastic processyt (ω) de-
fined for 0≤ t ≤ 1 andω in some probability space�, such that for any finite
setS ⊂ [0, 1], yt for t in S have distributionN(0, C), whereC = CU for
the uniform distribution functionU(t) = t, 0 ≤ t ≤ 1, andt 7→ yt (ω) is

1



2 Introduction: Donsker’s Theorem, Metric Entropy, and Inequalities

continuous for almost allω. So the empirical processαn converges in distri-
bution to the Brownian bridge composed withF, namelyt 7→ yF(t), at least
when restricted to finite sets.

It was then natural to ask whether this convergence extends to infinite sets
or the whole interval or line. Kolmogorov (1933) showed that whenF is
continuous, the supremum supt αn(t) and the supremum of absolute value,
supt |αn(t)|, converge in distribution to the laws of the same functionals ofyF .
Then, these functionals ofyF have the same distributions as for the Brownian
bridge itself, sinceF takesR onto an interval including(0, 1) and which may
or may not contain 0 or 1; this makes no difference to the suprema sincey0 ≡
y1 ≡ 0. Also,yt → 0 almost surely ast ↓ 0 ort ↑ 1 by sample continuity; the
suprema can be restricted to a countable dense set such as the rational numbers
in (0, 1) and are thus measurable. Kolmogorov evaluated the distributions of
supt yt and supt |yt | explicitly (see RAP, Propositions 12.3.3 and 12.3.4).

Doob (1949) asked whether the convergence in distribution held for more
general functionals. Donsker (1952) stated and proved (not quite correctly) a
general extension. This book will present results proved over the past few
decades by many researchers, where the collection of half-lines(−∞, x],
x ∈ R, is replaced by much more general classes of sets in, and functions
on, general sample spaces, for example the class of all ellipsoids inR

3.
To motivate and illustrate the general theory, the first section will give a re-

vised formulation and proof of Donsker’s theorem. Then the next two sections,
on metric entropy and inequalities, provide concepts and facts to be used in the
rest of the book.

1.1 Empirical processes: the classical case

In this section, the aim is to treat an illuminating and historically basic special
case. There will be plenty of generality later on. Here letP be the uniform
distribution (Lebesgue measure) on the unit interval [0, 1]. Let U be its dis-
tribution function,U(t) = t, 0 ≤ t ≤ 1. LetUn be its empirical distribution
functions andαn := n1/2(Un − U) on [0, 1].

It will be proved that asn → ∞, αn converges in law (in a sense to be
made precise below) to a Brownian bridge processyt , 0 ≤ t ≤ 1 (RAP, before
Theorem 12.1.5). Recall thatyt can be written in terms of a Wiener process
(Brownian motion)xt , namelyyt = xt − tx1, 0 ≤ t ≤ 1. Or,yt is xt condi-
tioned onx1 = 0 in a suitable sense (RAP, Proposition 12.3.2). The Brownian
bridge (like the Brownian motion) is sample-continuous, that is, it can be cho-
sen such that for allω, the functiont 7→ yt (ω) is continuous on [0, 1] (RAP,
Theorem 12.1.5).



1.1 Empirical processes: the classical case 3

Donsker in 1952 proved that the convergence in law ofαn to the Brownian
bridge holds, in a sense, with respect to uniform convergence int on the whole
interval [0, 1]. How to define such convergence in law correctly, however, was
not clarified until much later. General definitions will be given in Chapter 3.
Here, a more special approach will be taken in order to state and prove an
accessible form of Donsker’s theorem.

For a functionf on [0, 1], we have the sup norm

‖f ‖∞ := sup{|f (t)| : 0 ≤ t ≤ 1}.
Here is the form of Donsker’s theorem that will be the main result of this section.

1.1.1 Theorem For n = 1, 2, · · · , there exist probability spaces�n such
that:

(a) On �n, there existn i.i.d. random variablesX1, · · · , Xn with uni-
form distribution in[0, 1]. Let αn be thenth empirical process based
on theseXi ;

(b) On �n a sample-continuous Brownian bridge processYn: (t, ω) 7→
Yn(t, ω) is also defined;

(c) ‖αn−Yn‖∞ is measurable, and for allε > 0, Pr(‖αn−Yn‖∞ > ε) → 0
asn → ∞.

Notes. (i) Part (c) gives a sense in which the empirical processαn converges
in distribution to the Brownian bridge with respect to the sup norm‖ · ‖∞.

(ii) It is actually possible to use one probability space on whichX1, X2, · · ·
are i.i.d., whileYn = (B1 + · · · + Bn)/

√
n, Bj being independent Brownian

bridges. This is an example of aninvariance principle, to be treated in Chapter 9,
not proved in this section.

(iii) One can define allαn andYn on one probability space and makeYn all
equal someY , although here the joint distributions ofαn for differentn will be
different from their original ones. Thenαn will converge toY in probability
and moreover can be defined so that‖αn − Y‖∞ → 0 almost surely, as will be
shown in Section 3.5.

Proof For a positive integerk, letLk be the set ofk +1 equally spaced points,

Lk := {0, 1/k, 2/k, · · · , 1} ⊂ [0, 1].

It will first be shown that both processesαn andyt , for large enoughn and
k, can be well approximated by step functions and then by piecewise-linear
interpolation of their values onLk.
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Given 0< ε ≤ 1, takek = k(ε) large enough so that

4k · exp
(− kε2/648

)
< ε/6.(1.1.2)

Let Ijk := [j/k, (j + 1)/k], j = 0, · · · , k − 1. By the representationyt =
xt − tx1, we have

Pr{|yt − yj/k| > ε/6 for somet ∈ Ijk} ≤ p1 + p2,

where

p1 := Pr{|x1| > kε/18}, p2 := Pr{|xt − xj/k| > ε/9 for somet ∈ Ijk}.
Thenp1 ≤ 2 · exp(−k2ε2/648) (RAP, Lemma 12.1.6(b)). Forp2, via a re-
flection principle (RAP, 12.3.1) and the fact that{xu+h − xu}h≥0 has the same
distribution as{xh}h≥0 (applied tou = j/k), we havep2 ≤ 4 exp(−kε2/162).
Thus by (1.1.2),

Pr{|yt − yj/k| > ε/6(1.1.3)

for somej = 0, · · · , k − 1 and somet ∈ Ijk} < ε/3.

Next, we need a similar bound forαn whenn is large. The following will help:

1.1.4 Lemma Given the uniform distributionU on [0, 1]:

(a) For 0 ≤ u ≤ 1 and any finite setS ⊂ [0, 1 − u], the joint distribution
of {Un(u + s) − Un(u)}s∈S is the same as foru = 0.

(b) The same holds forαn in place ofUn.
(c) The distribution ofsup{|αn(t + j/k) − αn(j/k)| : 0 ≤ t ≤ 1/k} is the

same for allj .

Proof (a) Let S = {si}mi=1 where we can assumes0 = 0. It’s enough to
consider{Un(u + sj ) − Un(u + sj−1)}mj=1, whose partial sums give the desired
quantities. Multiplying byn, we getm random variables from a multinomial
distribution forn observations for the firstm of m + 1 categories, which have
probabilities{sj − sj−1}m+1

j=1 , wheresm+1 = 1 (Appendix B, Theorem B.2).
This distribution doesn’t depend onu.

(b) Sinceαn(u + s) − αn(u) = n1/2(Un(u + s) − Un(u) − s), (b) follows
from (a).

(c) The statement holds for finite subsets ofIjk by (b). By monotone con-
vergence, we can let the finite sets increase up to the countable set of rational
numbers inIjk. SinceUn is right-continuous, suprema over the rationals in
Ijk equal suprema over the whole interval (the right endpoint is rational), and
Lemma 1.1.4 is proved.
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So in bounding the supremum in Lemma 1.1.4(c) we can takej = 0, and
we need to bound Pr{n1/2|Un(t) − t | > ε for somet ∈ [0, 1/k]}. Suppose
given a multinomial distribution of numbersn1, · · · , nr of sample sizen =
n1 + · · · + nr in r bins with probabilitiesp1, · · · , pr . Then for eachj , the
conditional distribution ofnj+1 given n1, · · · , nj is the same as that given
n1 + · · · + nj , namely a binomial distribution forn − n1 − · · · − nj trials
with probabilitypj+1/(pj+1 + · · · + pn) of success on each (see Appendix B,
Theorem B.3(c)). It follows that the empirical distribution functionUn has the
following Markovproperty: if 0< t1 < · · · < tj < t < u, then the conditional
distribution ofUn(u) givenUn(t1), · · · , Un(tj ), Un(t) is the same as that given
Un(t). Specifically, given thatUn(t) = m/n, the conditional distribution of
Un(u) is that of(m + X)/n whereX has a binomial distribution forn − m

trials with success probability(u − t)/(1 − t). To be givenUn(t) = m/n is
equivalent to being givenαn(t) = n1/2(m

n
− t), andαn also has the Markov

property. So the conditional distribution ofαn(u) givenm = nUn(t) has mean

µm := n1/2
{

m

n

[
1 − u − t

1 − t

]
+ u − t

1 − t
− u

}
= n1/2

((
m

n
− t

)(
1 − u

1 − t

))

and variance
(n − m)(u − t)(1 − u)

n(1 − t)2
≤ u − t

1 − t
≤ u.

So, by Chebyshev’s inequality,

Pr
{∣∣αn(u) − µm

∣∣ ≥ 2u1/2
∣∣m} ≤ 1/4.

If u ≤ 1/2, then1−u
1−t

≥ 1
2. Let 0< δ < 1. If αn(t) > δ, thenm

n
− t > δ/n1/2

andµm > δ(1−u
1−t

) ≥ δ/2, so for anyγ > δ (such that Pr{αn(t) = γ } > 0),

Pr

{
αn(u) >

δ

2
− 2u1/2

∣∣∣∣αn(t) = γ

}
≥ 3/4.

(For such aγ , γ = n1/2(m
n

− t) for some integerm.) If u < δ2/64, then
u < 1/2 and

Pr{αn(u) > δ/4 | αn(t) = γ } ≥ 3/4.

Letu = 1/k andδ = ε/4. Then by (1.1.2), sincee−x < 1/24 impliesx > 2,
we haveu < δ2/64, so

Pr{αn(1/k) > ε/16 | αn(t) = γ } ≥ 3/4 for γ > ε/4.

Now take a positive integerr and letτ be the smallest value ofj/(kr),
if any, for j = 1, · · · , r, for which αn(τ) > ε/4. Let Ar be the event
that such aj exists. LetArj := {τ = j/(kr)}. ThenAr is the union of the
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disjoint setsArj for j = 1, · · · , r. For each suchj , by the Markov property,
Pr{αn(1/k) > ε/16 | Arj } ≥ 3/4. Thus

Pr{αn(1/k) > ε/16 | Ar} ≥ 3/4.

Let r → ∞. Then by right continuity ofUn andαn, we get

Pr{αn(t) > ε/4 for somet ∈ [0, 1/k]} ≤ 4
3 Pr{αn(1/k) > ε/16}.

Likewise,

Pr{αn(t) < −ε/4 for somet ∈ [0, 1/k]} ≤ 4
3 Pr{αn(1/k) < −ε/16}.

Thus by Lemma 1.1.4(c),

Pr{|αn(t) − αn(j/k)| > ε/4 for somet ∈ Ijk(1.1.5)

andj = 0, 1, · · · , k − 1} ≤ (4k/3) Pr(|αn(1/k)| > ε/16).

As n → ∞, for our fixedk, by the central limit theorem and RAP, Lemma
12.1.6(b),

Pr{|αn(1/k)| > ε/16} → Pr{|y1/k| > ε/16} ≤ 2 · exp
(− kε2/512

)
.

So forn large enough, sayn ≥ n0 = n0(ε), recalling thatk = k(ε),

Pr{|αn(1/k)| > ε/16} < 3 · exp
(− kε2/512

)
.

Then by (1.1.5) and (1.1.2), forn ≥ n0,

Pr{|αn(t) − αn(j/k)| > ε/4(1.1.6)

for somej = 0, · · · , k − 1 andt ∈ Ijk} ≤ ε/6.

As mentioned previously, the law, sayLk(αn), of {αn(i/k)}ki=0 converges by the
central limit theorem inRk+1 to that of{yi/k}ki=0, sayLk(y). OnR

k+1, put the
metricd∞(x, y) := |x − y|∞ := maxi |xi − yi |, which of course metrizes the
usual topology. Since convergence of laws is metrized by Prokhorov’s metric
ρ (RAP, Theorem 11.3.3), forn large enough, sayn ≥ n1(ε) ≥ n0(ε), we have
ρ(Lk(αn), Lk(y)) < ε/6. Then by Strassen’s theorem (RAP, Corollary 11.6.4),
there is a probability measureµn on R

k+1 × R
k+1 such that for(X, Y ) with

L(X, Y ) = µn, we have

L(X) = Lk(αn), L(Y ) = Lk(y),
(1.1.7)

andµn{(x, y) : |x − y|∞ > ε/6} ≤ ε/6

(RAP, Section 9.2).
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Let Libk (for “linear in between”) be the function fromRk+1 into the space
C[0, 1] of all continuous real functions on [0, 1] such thatLibk(x)(j/k) =
xj , j = 0, · · · , k, and Libk(x)(·) is linear (affine) on each closed interval
Ijk = [j/k, (j + 1)/k], j = 0, · · · , k − 1. For anyx, y ∈ R

k+1, Libk(x) −
Libk(y) is also linear on eachIjk, so it attains its maximum, minimum, and
maximum absolute value at endpoints. So for the supremum norm‖f ‖∞ :=
sup0≤x≤1 |f (x)| onC[0, 1], Libk is an isometry into:

‖Libk(x) − Libk(y)‖∞ = |x − y|∞ for all x, y ∈ R
k+1.

SinceC[0, 1] is a separable metric space (e.g., RAP, Corollary 11.2.5),(f, g) 7→
‖f − g‖∞ is jointly measurable inf, g ∈ C[0, 1] (RAP, Proposition 4.1.7).
So, from (1.1.7) we get

µn{‖Libk(x) − Libk(y)‖∞ > ε/6} ≤ ε/6.(1.1.8)

For any real-valued functionf on [0, 1], let πk(f ) = {f (j/k)}kj=0 ∈ R
k+1.

Thenπk(Libk(x)) = x for all x ∈ R
k+1.

For a sample-continuous Brownian bridge process(ω, t) 7→ yt (ω), 0 ≤ t ≤
1, the map

ω 7→ {t 7→ yt (ω) : 0 ≤ t ≤ 1} ∈ C[0, 1]

is measurable for the Borelσ -algebra onC[0, 1] (by a simple adaptation of
RAP, Proposition 12.2.2). (Recall that in any topological space, the Borel
σ -algebra is the one generated by the open sets.) If|xj+1 − xj | < ε then
|Libk(x)(t) − xj | < ε for all t ∈ Ijk. It follows from (1.1.3) that

Pr{‖y − Libk(πk(y))‖∞ > ε/3} < ε/3,(1.1.9)

where for eachω, we have a functiony : t 7→ yt (ω), 0 ≤ t ≤ 1.
We can take the probability space for eachαn process as the unit cubeIn,

where then i.i.d. uniform variables in definingUn andαn arex1, · · · , xn, with
x = (x1, · · · , xn) ∈ In. Then

Ak : x 7→ {αn(j/k)}kj=0

is measurable fromIn into R
k+1 and has distributionLk(αn) on R

k+1. Also,
x 7→ Libk(Ak(x)) is measurable fromIn into C[0, 1].

The next theorem will give a way of linking up or “coupling” processes.
Recall that aPolish space is a topological space metrizable by a complete
separable metric.

1.1.10 Theorem(Vorob’ev-Berkes-Philipp)LetX, Y andZ be Polish spaces
with Borelσ -algebras. Letα be a law onX × Y and letβ be a law onY × Z.
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Let πY (x, y) := y andτY (y, z) := y for all (x, y, z) ∈ X × Y × Z. Suppose
the marginal distributions ofα and β on Y are equal, in other wordsη :=
α ◦π−1

Y = β ◦ τ−1
Y onY . Letπ12(x, y, z) := (x, y) andπ23(x, y, z) := (y, z).

Then there exists a lawγ onX×Y ×Z such thatγ ◦π−1
12 = α andγ ◦π−1

23 = β.

Proof There exist conditional distributionsαy for α onX giveny ∈ Y, so that
for eachy ∈ Y, αy is a probability measure onX, for any Borel setA ⊂ X, the
function y 7→ αy(A) is measurable, and for any integrable functionf for α,∫

f dα =
∫ ∫

f (x, y) dαy(x) dη(y)

(RAP, Section 10.2). Likewise, there exist conditional distributionsβy on Z

for β. Letx andz be conditionally independent giveny. In other words, define
a set functionγ onX × Y × Z by

γ (C) =
∫ ∫ ∫

1C(x, y, z) dαy(x) dβy(z) dη(y).

The integral is well-defined if

(a) C = U × V × W for Borel setsU, V , andW in X, Y , andZ, respec-
tively;

(b) C is a finite union of such sets, which can be taken to be disjoint (RAP,
Proposition 3.2.2 twice); or

(c) C is any Borel set inX × Y × Z, by RAP, Proposition 3.2.3 and the
monotone class theorem (RAP, Theorem 4.4.2).

Also, γ is countably additive by monotone convergence (for all three inte-
grals). Soγ is a law onX × Y × Z. Clearlyγ ◦ π−1

12 = α andγ ◦ π−1
23 = β.

Now, let’s continue the proof of Theorem 1.1.1. The function(x, f ) 7→
‖αn − f ‖∞ is jointly Borel measurable forx ∈ In andf ∈ C[0, 1]. Also,
u 7→ Libk(u) is continuous and thus Borel measurable fromR

k+1 into C[0, 1].
So (x, u) 7→ ‖αn − Libk(u)‖∞ is jointly measurable onIn × R

k+1. (This is
true even thoughαn /∈ C[0, 1] and the functionst 7→ αn(t) for different ω
form a nonseparable space for‖ · ‖∞.) Thusx 7→ ‖αn − Libk(Ak(x))‖∞ is
measurable onIn. From (1.1.6), we then have

Pr{‖αn − Libk(Ak(x))‖∞ > ε/2} ≤ ε/6.(1.1.11)

Apply Theorem 1.1.10 to(X, Y, Z) = (In, R
k+1, R

k+1), with the law of
(x, Ak(x)) onIn × R

k+1, andµn from (1.1.7) onRk+1 × R
k+1, both of which

induce the lawLk(αn) onY = R
k+1, to get a lawγn.
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Then apply Theorem 1.1.10, this time to(X, Y, Z) = (In × R
k+1, R

k+1,

C[0, 1]), with γn onX × Y and the law of(πk(y), y) onY × Z, wherey is the
Brownian bridge.

We see that there is a probability measureζn on In × C[0, 1] such that if
L(Vn, Yn) = ζn, thenL(Vn) is uniform onIn, L(Yn) is the law of the Brownian
bridge, and if we takeαn = αn(·)(Vn), then forn ≥ n1(ε) defined after (1.1.6),

‖αn − Yn‖∞ ≤ ‖αn − Libk(πk(αn))‖∞

+ ‖Libk(πk(αn)) − Libk(πk(Yn))‖∞

+ ‖Libk(πk(Yn)) − Yn‖∞

≤ ε/2 + ε/6 + ε/3 ≤ ε

except on a set with probability at mostε
6 + ε

6 + ε
3 < ε, by (1.1.11), (1.1.8),

and (1.1.9), respectively.
Let �n := In × C[0, 1], n ≥ 1. For r = 1, 2, · · · , let nr := n1(1/r).

Let Nr be an increasing sequence withNr ≥ nr for all r. For n < N1,
defineµn as in (1.1.7) but with 1 in place ofε/6 (both times), so that it always
holds: one can takeµn as the product measureLk(αn) × Lk(y). Defineζn

on �n as above, but with 1 in place ofε/m for m = 2, 4, or 6 in (1.1.6) and
(1.1.11). ForNr ≤ n < Nr+1, defineµn and ζn as for ε = 1/r. Then
Pr(‖αn − Yn‖∞ > 1/r) ≤ 1/r for n ≥ Nr, r ≥ 1, and Theorem 1.1.1 is
proved.

Remarks. It would be nice to be able to say thatαn converges to the Brownian
bridgey in law in some spaceS of functions with supremum norm. The standard
definition of convergence in law, at least ifS is a separable metric space, would
say thatEH(αn) → EH(y) for all bounded continuous real functionsH on
S (RAP, Section 9.3). Donsker (1952) stated this when continuity is assumed
only at almost all values ofy in C[0, 1]. But then,H could be nonmeasurable
away from the support ofy, andEH(αn) is not necessarily defined. Perhaps
more surprisingly,EH(αn) may not be defined even ifH is bounded and
continuous everywhere. Consider for examplen = 1. Then in the set of all
possible functionsU1 − U , any two distinct functions are at distance 1 apart
for ‖ · ‖∞. So the set and all its subsets are complete, closed, and discrete for
‖ · ‖∞. If the image of Lebesgue (uniform) measure on [0, 1] by the function
x 7→ (t 7→ 1{x≥t} − t) were defined on all Borel sets for‖ · ‖∞ in its range,
or specifically on all complete, discrete sets, it would give an extension of
Lebesgue measure to a countably additive measure on all subsets of [0, 1].
Assuming the continuum hypothesis, which is consistent with the other axioms
of set theory, such an extension is not possible (RAP, Appendix C).
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So in a nonseparable metric space, such as a space of empirical distribution
functions with supremum norm, the Borelσ -algebra may be too large. In
Chapter 3 it will be shown how to get around the lack of Borel measurability.

Here is an example relating to the Vorob’ev theorem (1.1.10). LetX = Y =
Z = {−1, 1}. In X × Y × Z let each coordinatex, y, z have the uniform
distribution giving probability 1/2 each to−1, 1. Consider the laws on the
products of two of the three spaces such thaty ≡ −x, z ≡ −y, andx ≡ −z.
There exist such laws having the given marginals onX, Y andZ. But there is
no law onX×Y ×Z having the given marginals onX×Y, Y ×Z, andZ ×X,
since the three equations together yield a contradiction.

1.2 Metric entropy and capacity

The word “entropy” is applied to several concepts in mathematics. What they
have in common is apparently that they give some measure of the size or com-
plexity of some set or transformation and that their definitions involve loga-
rithms. Beyond this rather superficial resemblance, there are major differences.
What are here called “metric entropy” and “metric capacity” are measures of the
size of a metric space, which must be totally bounded (have compact comple-
tion) in order for the metric entropy or capacity to be finite. Metric entropy will
provide a useful general technique for dealing with classes of sets or functions
in general spaces, as opposed to Markov (or martingale) methods. The latter
methods apply, as in the last section, when the sample space isR and the class
C of sets is the class of half-lines(−∞, x], x ∈ R, so thatC with its ordering
by inclusion is isomorphic toR with its usual ordering.

Let (S, d) be a metric space andA a subset ofS. Let ε > 0. A setF ⊂ S

(not necessarily included inA) is called anε-net for A if and only if for each
x ∈ A, there is ay ∈ F with d(x, y) ≤ ε. LetN(ε, A, S, d) denote the minimal
number of points in anε-net inS for A. HereN(ε, A, S, d) is sometimes called
acovering number. It’s the number of closed balls of radiusε and centers inS
needed to coverA.

For any setC ⊂ S, define thediameterof C by

diamC := sup{d(x, y) : x, y ∈ C}.
LetN(ε, C, d) be the smallestn such thatC is the union ofn sets of diameter at
most 2ε. Let D(ε, A, d) denote the largestn such that there is a subsetF ⊂ A

with F havingn members andd(x, y) > ε wheneverx 6= y for x andy in F .
Then, in a Banach space,D(2ε, A, d) is the largest number of disjoint closed
balls of radiusε that can be “packed” intoA and is sometimes called a “packing
number.”
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The three quantities just defined are related by the following inequalities:

1.2.1 Theorem For anyε > 0 and setA in a metric spaceS with metricd,

D(2ε, A, d) ≤ N(ε, A, d) ≤ N(ε, A, S, d)

≤ N(ε, A, A, d) ≤ D(ε, A, d).

Proof The first inequality holds since a set of diameter 2ε can contain at
most one of a set of points more than 2ε apart. The next holds because any
ball B(x, ε) := {y : d(x, y) ≤ ε} is a set of diameter at most 2ε. The third
inequality holds since requiring centers to be inA is more restrictive. The last
holds because a setF of points more thanε apart, with maximal cardinality,
must be anε-net, since otherwise there would be a point more thanε away
from each point ofF , which could be adjoined toF , a contradiction unlessF
is infinite, but then the inequality holds trivially.

It follows that asε ↓ 0, when all the functions in the theorem go to∞ unless
S is a finite set, they have the same asymptotic behavior up to a factor of 2 inε.
So it will be convenient to choose one of the four and make statements about
it, which will then yield corresponding results for the others. The choice is
somewhat arbitrary. Here are some considerations that bear on the choice.

The finite set of points, whether more thanε apart or forming anε-net, are
often useful, as opposed to the sets in the definition ofN(ε, A, d). N(ε, A, S, d)

depends not only onA but on the larger spaceS. Many workers, possibly for
these reasons, have preferredN(ε, A, A, d). But the latter may decrease when
the setA increases. For example, letA be the surface of a sphere of radiusε

around 0 in a Euclidean spaceS and letB := A ∪ {0}. ThenN(ε, B, B, d) =
1 < N(ε, A, A, d) for 1 < ε < 2. This was the reason, apparently, that
Kolmogorov chose to useN(ε, A, d).

In this book I adoptD(ε, A, d) as basic. It depends only onA, not on the
larger spaceS, and is nondecreasing inA. If D(ε, A, d) = n, then there aren
points which are more thanε apart and at the same time form anε-net.

Now, theε-entropyof the metric space(A, d) is defined asH(ε, A, d) :=
logN(ε, A, d), and theε-capacityas logD(ε, A, d). Some other authors take
logarithms to the base 2, by analogy with information-theoretic entropy. In this
book logarithms will be taken to the usual basee, which fits for example with
bounds coming from moment-generating functions as in the next section, and
with Gaussian measures as in Chapter 2. There are a number of interesting sets
of functions whereN(ε, A, d) is of the order of magnitude exp(ε−r ) asε ↓ 0,
for some powerr > 0, so that theε-entropy, and likewise theε-capacity, have
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the simpler orderε−r . But in other cases below,D(ε, A, d) is itself of the order
of a power of 1/ε.

1.3 Inequalities

This section collects several inequalities bounding the probabilities that random
variables, and specifically sums of independent random variables, are large.
Many of these follow from a basic inequality of S. Bernstein and P. L. Cheby-
shev.

1.3.1 Theorem For any real random variableX andt ∈ R,

Pr{X ≥ t} ≤ inf u≥0 e−tuEeuX.

Proof For any fixedu ≥ 0, the indicator function of the set whereX ≥ t

satisfies 1{X≥t} ≤ eu(X−t), so the inequality holds for a fixedu; then take
inf u≥0.

For any independent real random variablesX1, · · · , Xn, let Sn := X1 +
· · · + Xn.

1.3.2 Bernstein’s inequality Let X1, X2, · · · , Xn be independent real ran-
dom variables with mean0. Let 0 < M < ∞ and suppose that|Xj | ≤ M

almost surely forj = 1, · · · , n. Let σ 2
j = Var(Xj ) and τ2

n := Var(Sn) =
σ 2

1 + · · · + σ 2
n . Then for anyK > 0,

Pr
{|Sn| ≥ Kn1/2} ≤ 2 · exp

(− nK2/
(
2τ2

n + 2Mn1/2K/3
))

.(1.3.3)

Proof We can assume thatτ2
n > 0, since otherwiseSn = 0 a.s. (where a.s.

means almost surely) and the inequality holds. For anyu ≥ 0 andj = 1, · · · , n,

E exp(uXj ) = 1 + u2σ 2
j Fj /2 ≤ exp

(
σ 2
j Fju

2/2
)
,(1.3.4)

whereFj := 2σ−2
j

∑∞
r=2 ur−2EX r

j /r!, or Fj = 0 if σ 2
j = 0. For r ≥ 2,

|Xj |r ≤ X 2
j M r−2 a.s., soFj ≤ 2

∑∞
r=2 (Mu)r−2/r! ≤ ∑∞

r=2 (Mu/3)r−2 =
1/(1 − Mu/3) for all j = 1, · · · , n if 0 < u < 3/M.

Let v := Kn1/2 andu := v/(τ2
n + Mv/3), so thatv = τ2

nu/(1 − Mu/3).

Then 0< u < 3/M. Thus, multiplying the factors on the right side of (1.3.4)
by independence, we have

E exp(uSn) ≤ exp
(
τ2
nu2/2(1 − Mu/3)

) = exp(uv/2).
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So by Theorem 1.3.1, Pr{Sn ≥ v} ≤ e−uv/2 and

e−uv/2 = exp
(− v2/

(
2τ2

n + 2Mv/3
))

= exp
(− nK2/

(
2τ2

n + 2MKn1/2/3
))

.

Here are some remarks on Bernstein’s inequality. Note that for fixedK and
M, if Xi are i.i.d. with varianceσ 2, then asn → ∞, the bound approaches the
normal bound 2· exp(−K2/(2σ 2)), as given in RAP, Lemma 12.1.6. More-
over, this is true even ifM := Mn → ∞ asn → ∞ while K stays constant,
provided thatMn/n1/2 → 0. Sometimes the inequality can be applied to
unbounded variables, replacing them by “truncated” ones, say replacing an
unboundedf by fM wherefM(x) := f (x)1{|f (x)|≤M}.

Next, lets1, s2, · · · , be i.i.d. variables withP(si = 1) = P(si = −1) = 1/2.

Such variables are called “Rademacher” variables. We have the following
inequality.

1.3.5 Proposition(Hoeffding) For anyt ≥ 0 and realaj ,

Pr

{
n∑

j=1

aj sj ≥ t

}
≤ exp

(
−t2

/(
2

n∑
j=1

a2
j

))
.

Proof Since 1/(2n)! ≤ 2−n/n! for n = 0, 1, · · · , we have coshx ≡
(ex + e−x)/2 ≤ exp(x2/2) for all x. Apply Theorem 1.3.1, where by cal-
culus, infu exp(−ut +∑n

j=1 a2
j u2/2) is attained atu = t/

∑n
j=1 a2

j , and the
result follows.

Here are some remarks on Proposition 1.3.5. LetY1, Y2, · · · , be independent
variables which are symmetric, in other wordsYj has the same distribution as
−Yj for all j . Let si be Rademacher variables independent of each other and of
all theYj . Then the sequence{sjYj }{j≥1} has the same distribution as{Yj }{j≥1}.
Thus to bound the probability that

∑n
j=1 Yj > K, for example, we can consider

the conditional probability for eachY1, · · · , Yn,

Pr

{
n∑

j=1

sjYj > K

∣∣∣∣Y1, · · · , Yn

}
≤ exp

(
−K2

/(
2

n∑
j=1

Y 2
j

))

by 1.3.5. Then to bound the original probability, integrating over the distribution
of theYj , one just needs to have bounds on the distribution of

∑n
j=1 Y 2

j , which
may simplify the problem considerably.
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The Bernstein inequality (1.3.2) used variances as well as bounds for centered
variables. The following inequalities, also due to Hoeffding, use only bounds.
They are essentially the best that can be obtained, under their hypotheses, by
the moment-generating function technique.

1.3.6 Theorem(Hoeffding) Let X1, · · · , Xn be independent variables with
0 ≤ Xj ≤ 1 for all j . LetX := (X1 + · · · + Xn)/n andµ := EX. Then for
0 < t < 1 − µ,

Pr
{
X − µ ≥ t

} ≤
{(

µ

µ + t

)µ+t ( 1 − µ

1 − µ − t

)1−µ−t
}n

≤ e−nt2g(µ) ≤ e−2nt2
,

where

g(µ) := (1 − 2µ)−1 log((1 − µ)/µ) for 0 < µ < 1/2, or

:= 1/(2µ(1 − µ)) for 1/2 ≤ µ ≤ 1.

Remarks. For t > 1 − µ, Pr( X − µ > t) ≤ Pr(X > 1) = 0. Fort < 0, the
given probability would generally be of the order of 1/2 or larger, so no small
bound for it would be expected.

Proof For anyv > 0, the functionf (x) := evx is convex (its second derivative
is positive), so any chord lies above its graph (RAP, Section 6.3). Specifically,
if 0 < x < 1, thenevx ≤ 1−x+xev. Taking expectations givesE exp(vXj ) ≤
1 − µj + µje

v, whereµj := EXj . (Note that the latter inequality becomes
an equation for a Bernoulli variableXj , taking only the values 0, 1.) Let
Sn := X1 + · · · + Xn. Then

Pr
(
X − µ ≥ t

) = Pr(Sn − ESn ≥ nt)

≤ E exp(v(Sn − ESn − nt))

= e−vn(t+µ)5n
j=1E exp(vXj )

≤ e−nv(t+µ)5n
j=1

(
1 − µj + µje

v
)
.

The following fact is rather well known (e.g., RAP (5.1.6) and p. 276):

1.3.7 Lemma For any nonnegative real numberst1, · · · , tn, the geometric
mean is less than or equal to the arithmetic mean, in other words

(t1t2 · · · tn)1/n ≤ (t1 + · · · + tn)/n.
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Applying the lemma gives

Pr
{
X − µ > t

} ≤ e−nv(t+µ)

(
1

n

n∑
j=1

1 − µj + µje
v

)n

≤ e−nv(t+µ)
(
1 − µ + µev

)n
.

To find the minimum of this forv > 0, note that it becomes large asv → ∞
since t + µ < 1, while setting the derivative with respect tov equal to 0
gives a single solution, where 1− µ + µev = µev/(t + µ) andev = 1 +
t/(µ(1−µ− t)). Substituting these values into the bounds gives the first, most
complicated bound in the statement of the theorem. This bound can be written
as Pr( X − µ ≥ t) ≤ exp(−nt2G(t, µ)), where

G(t, µ) := µ + t

t2
log

(
µ + t

µ

)
+
(

1 − µ − t

t2

)
log

(
1 − µ − t

1 − µ

)
.

The next step is to show that min0<t<1 G(t, µ) = g(µ) as defined in the state-
ment of the theorem. For 0< x < 1 let

H(x) :=
(

1 − 2

x

)
log(1 − x).

In ∂G(t, µ)/∂t , the terms not containing logarithms cancel, giving

t2∂G(t, µ)

∂t
=

[
1 − 2

t
(1 − µ)

]
log

(
1 − t

1 − µ

)

−
[
1 − 2

t
(µ + t)

]
log

(
1 − t

µ + t

)

= H

(
t

1 − µ

)
− H

(
t

µ + t

)
.

To see thatH is increasing inx for 0 < x < 1, take the Taylor series of
log(1 − x) and multiply by 1− 2

x
to get the Taylor series ofH around 0,

all whose coefficients are nonnegative. Only the first order term is 0. Thus
∂G/∂t > 0 if and only if t/(1 − µ) > t/(µ + t), or equivalentlyt > 1 − 2µ.
So if µ < 1/2, thenG(t, µ), for fixedµ, has a minimum with respect tot > 0
at t = 1− 2µ, givingg(µ) for that case as stated. Or ifµ ≥ 1/2, thenG(t, µ)

is increasing int > 0, with limt↓0 G(t, µ) = g(µ) as stated for that case, using
the first two terms of the Taylor series aroundt = 0 of each logarithm.

Now to get the final bound exp(−2nt2), it needs to be shown that the mini-
mum ofg(µ) for 0 < µ < 1 is 2. Forµ ≥ 1/2, g is increasing (its denominator
is decreasing), andg(1/2) = 2. Forµ < 1/2, lettingw := 1 − 2µ, we get
g(µ) = 1

w
log
(1+w

1−w

)
. From the Taylor series of log(1 + w) and log(1 − w)
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aroundw = 0, we see thatg is increasing inw, and so decreasing inµ, and
converges to 2 asµ → 1/2. Thusg has a minimum atµ = 1/2, which is 2.
The theorem is proved.

For the empirical measurePn, if A is a fixed measurable set,nPn(A) is
a binomial random variable, and in a multinomial distribution, eachni has a
binomial distribution. So we will have need of some inequalities for binomial
probabilities, defined by

B(k, n, p) :=
∑

0≤j≤k

(
n

j

)
pjqn−j , 0 ≤ q := 1 − p ≤ 1,

E(k, n, p) :=
∑

k≤j≤n

(
n

j

)
pjqn−j .

Herek is usually, but not necessarily, an integer. Thus, inn independent trials
with probabilityp of success on each trial, so thatq is the probability of fail-
ure,B(k, n, p) is the probability of at mostk successes, andE(k, n, p) is the
probability of at leastk successes.

1.3.8 Chernoff-Okamoto inequalities We have

E(k, n, p) ≤
(np

k

)k
(

nq

n − k

)n−k

if k ≥ np,(1.3.9)

B(k, n, p) ≤ exp
(− (np − k)2/(2npq)

)
if k ≤ np ≤ n/2.(1.3.10)

Proof These facts follow directly from the Hoeffding inequality 1.3.6. For
(1.3.10), note thatB(k, n, p) = E(n − k, n, 1 − p) and apply theg(µ) case
with µ = 1 − p.

If in (1.3.9) we setx := nq/(n − k) ≤ ex−1, it follows that

E(k, n, p) ≤ (np/k)k ek−np if k ≥ np.(1.3.11)

The next inequality is for the special valuep = 1/2.

1.3.12 Proposition If k ≤ n/2 then2nB(k, n, 1/2) ≤ (ne/k)k.

Proof By (1.3.9) and symmetry,B(k, n, 1/2) ≤ (n/2)nk−k(n − k)k−n. Let-
ting y := n/(n − k) ≤ ey−1 then gives the result.

A form of Stirling’s formula with error bounds is:
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1.3.13 Theorem For n = 1, 2, · · · , e1/(12n+1) ≤ n!(e/n)n(2πn)−1/2 ≤
e1/12n.

Proof See Feller (1968), vol. 1, Section II.9, p. 54.

For any realx let x+ := max(x, 0). A Poissonrandom variablez with
parameterm has the distribution given by Pr(z = k) = e−mmk/k! for each
nonnegative integerk.

1.3.14 Lemma For any Poisson variablez with parameterm ≥ 1,

E(z − m)+ ≥ m1/2/8.

Proof We haveE(z − m)+ = ∑
k>m e−mmk(k − m)/k!. Let j := [m],

meaningj is the greatest integer withj ≤ m. Then by a telescoping sum
(which is absolutely convergent),E(z−m)+ = e−mmj+1/j !.Then by Stirling’s
formula with error bounds (Theorem 1.3.13),

E(z − m)+ ≥ e−mmj+1(e/j )j (2πj )−1/2e−1/(12j )

≥ (
mj+1/jj+ 1

2
)
e−13/12(2π)−1/2 ≥ m1/2/8.

In the following two facts, letX1, X2, · · · , Xn be independent random vari-
ables with values in a separable normed spaceS with norm‖ · ‖. (Such spaces
are defined, for example, in RAP, Section 5.2.) LetSj := X1 + · · · + Xj for
j = 1, · · · , n.

1.3.15 Ottaviani’s inequality If for someα > 0 andc with 0 < c < 1, we
haveP(‖Sn − Sj‖ > α) ≤ c for all j = 1, · · · , n, then

P
{

maxj≤n ‖Sj‖ ≥ 2α
} ≤ P(‖Sn‖ ≥ α)/(1 − c).

Proof The proof in RAP, 9.7.2, forS = R
k, works for any separable normedS.

Here(x, y) 7→ ‖x − y‖ is measurable:S × S 7→ R by RAP, Proposition 4.1.7.

When the random variablesXj are symmetric, there is a simpler inequality:

1.3.16 P. Lévy’s inequality Given a probability space(�, P )and a countable
setY , let X1, X2, · · · be stochastic processes defined on� indexed byY, in
other words for eachj andy ∈ Y, Xj (y)(·) is a random variable on�. For
any bounded functionf onY , let ‖f ‖Y := sup{|f (y)| : y ∈ Y }. Suppose that
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the processesXj are independent, with‖Xj‖Y < ∞ a.s., and symmetric, in
other words for eachj, the random variables{−Xj(y) : y ∈ Y } have the same
joint distribution as{Xj(y) : y ∈ Y }. LetSn := X1 + · · · + Xn. Then for each
n, andM > 0,

P
(
maxj≤n ‖Sj‖Y > M

) ≤ 2P (‖Sn‖Y > M) .

Notes. Each‖Sj‖Y is a measurable random variable becauseY is countable.
Lemma 9.1.9 treats uncountableY . The norm on a separable Banach space
(X, ‖ ·‖) can always be written in the form‖ ·‖Y for Y countable, via the Hahn-
Banach theorem (apply RAP, Corollary 6.1.5, to a countable dense set in the
unit ball ofX to get a countable norming subsetY in the dualX ′ of X, although
X′ may not be separable). On the other hand, the preceding lemma applies to
some nonseparable Banach spaces: the space of all bounded functions on an
infinite Y with supremum norm is itself nonseparable.

Proof Let Mk(ω) := maxj≤k ‖Sj‖Y . Let Ck be the disjoint events{Mk−1 ≤
M < Mk}, k = 1, 2, · · · , where we setM0 := 0. Then for 1 ≤ m ≤ n,

2‖Sm‖Y ≤ ‖Sn‖Y + ‖2Sm − Sn‖Y . So if ‖Sm‖Y > M, then‖Sn‖Y > M or
‖2Sm−Sn‖Y > M or both. The transformation which interchangesXj and−Xj

just for m < j ≤ n preserves probabilities, by symmetry and independence.
ThenSn is interchanged with 2Sm − Sn, while Xj are preserved forj ≤ m. So
P(Cm ∩ {‖Sn‖Y > M }) = P(Cm ∩ {‖2Sm − Sn‖Y > M }) ≥ P(Cm)/2, and
P(Mn > M ) = ∑n

m=1 P(Cm) ≤ 2P(‖Sn‖Y > M ).

Problems

1. Find the covariance matrix on{0, 1/4, 1/2, 3/4, 1} of

(a) the Brownian bridge processyt ;
(b) U4 − U . Hint: Recall thatn1/2(Un − U) has the same covariances

asyt .

2. Let 0 < t < u < 1. Let αn be the empirical process for the uniform
distribution on [0, 1].

(a) Show that the distribution ofαn(t) is concentrated in some finite
setAt .

(b) Let f (t, y, u) := E(αn(u)|αn(t) = y). Show that for anyy in At ,
(u, f (t, y, u)) is on the straight line segment joining(t, y) to (1, 0).
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3. Let (S, d) be a complete separable metric space. Letµ be a law onS × S

and letδ > 0 satisfy

µ({(x, y) : d(x, y) > 2δ}) ≤ 3δ.

Let π2(x, y) := y andP := µ ◦ π−1
2 . Let Q be a law onS such that

ρ(P, Q) < δ where ρ is Prokhorov’s metric. OnS × S × S let
π12(x, y, z) := (x, y) andπ3(x, y, z) := z. Show that there exists a lawα
onS × S × S such thatα ◦ π−1

12 = µ, α ◦ π−1
3 = Q, and

α({(x, y, z) : d(x, z) > 3δ}) ≤ 4δ.

Hint: Use Strassen’s theorem, which implies that for some lawν onS × S,
if L(Y, Z) = ν, thenL(Y ) = P , L(Z) = Q, andν({d(Y, Z) > δ}) < δ.

Then the Vorob’ev-Berkes-Philipp theorem applies.
4. LetA = B = C = {0, 1}. OnA × B, let

µ := (
δ(0,0) + 2δ(1,0) + 5δ(0,1) + δ(1,1)

)
/9.

On B × C, let ν := [δ(0,0) + δ(1,0) + δ(0,1) + 3δ(1,1)]/6. Find a lawγ on
A×B×C such that ifγ = L(X, Y, Z), thenL(X, Y ) = µ andL(Y, Z) = ν.

5. Let I = [0, 1] with usual metricd. For ε > 0, evaluateD(ε, I, d), N(ε,

I, d), andN(ε, I, I, d). Hint: The ceiling functiondxe is defined as the
least integer≥ x. Answers can be written in terms ofd·e.

6. For a Poisson variableX with parameterλ > 0, that is,P(X = k) =
e−λλk/k! for k = 0, 1, 2, · · · , evaluate the moment-generating function
EetX for all t . For M > λ, find the bound for Pr(X ≥ M) given by the
moment-generating function inequality (1.3.1).

Notes

Notes to Section 1.1.The contributions of Kolmogorov (1933), Doob (1949),
and Donsker (1952) were mentioned in the text.

When it was realized that the formulation by Donsker (1952) was incorrect
because of measurability problems, Skorokhod (1956) – see also Kolmogorov
(1956) – defined a separable metricd on the spaceD[0, 1] of right-continuous
functions with left limits on [0, 1], such that convergence ford to a continuous
function is equivalent to convergence for the sup norm, and the empirical pro-
cessαn converges in law inD[0, 1] to the Brownian bridge; see, for example,
Billingsley (1968, Chapter 3).

The formulation of Theorem 1.1.1 avoids the need for the Skorokhod topol-
ogy and deals with measurability. I don’t know whether Theorem 1.1.1 has
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been stated before explicitly, although it is within the ken of researchers on
empirical processes.

In Theorem 1.1.10, the assumption thatX, Y andZ are Polish can be weak-
ened: they could instead be any Borel sets in Polish spaces (RAP, Section 13.1).
Still more generally, since the proof of Theorem 10.2.2 in RAP depends just on
tightness, it is enough to assume thatX, Y andZ are universally measurable
subsets of their completions, in other words, measurable for the completion of
any probability measure on the Borel sets (RAP, Section 11.5). Shortt (1983)
treats universally measurable spaces and considers just what hypotheses on
X, Y andZ are necessary.

Vorob’ev (1962) proved Theorem 1.1.10 for finite sets. Then Berkes and
Philipp (1977, Lemma A1) proved it for separable Banach spaces. Their proof
carries over to the present case. Vorob’ev (1962) treated more complicated
families of joint distributions on finite sets, as did Shortt (1984) for more general
measurable spaces.

Notes to Section 1.2. Apparently the first publication onε-entropy was the
announcement by Kolmogorov (1955). Theorem 1.2.1, and the definitions of
all the quantities in it, are given in the longer exposition by Kolmogorov and
Tikhomirov (1959, Section 1, Theorem IV).

Lorentz (1966) proposed the name “metric entropy” rather than “ε-entropy,”
urging that functions should not be named after their arguments, as functions of
a complex variablez are not called “z-functions.” The name “metric entropy”
emphasizes the purely metric nature of the concept. Actually, “ε-entropy” has
been used for different quantities. Posner, Rodemich, and Rumsey (1967, 1969)
define anε, δ entropy, for a metric spaceS with a probability measureP defined
on it, in terms of a decomposition ofS into sets of diameter at mostε and one
set of probability at mostδ. Also, Posner et al. defineε-entropy as the infimum
of entropies−∑i P (Ui) log(P (Ui)) where theUi have diameters at mostε.
So Lorentz’s term “metric entropy” seems useful and will be adopted here.

Notes to Section 1.3. Sergei Bernstein (1927, pp. 159–165) published his
inequality. The proof given is based on Bennett (1962, p. 34) with some in-
correct, but unnecessary steps (his (3), (4),. . .) removed as suggested by Giné
(1974). For related and stronger inequalities under weaker conditions, such as
unbounded variables, see also Bernstein (1924, 1927), Hoeffding (1963), and
Uspensky (1937, p. 205).

Hoeffding (1963, Theorem 2) implies Proposition 1.3.5. Chernoff (1952,
(5.11)) proved (1.3.9). Okamoto (1958, Lemma 2(b′)) proved (1.3.10). In-
equality (1.3.11) appeared in Dudley (1978, Lemma 2.7) and Lemma 1.3.12 in
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Dudley (1982, Lemma 3.3). On Ottaviani’s inequality (1.3.15) for real-valued
functions, see (9.7.2) and the notes to Section 9.7 in RAP. The P. Lévy inequality
(1.3.16) is given for Banach-valued random variables in Kahane (1985, Section
2.3). For the case of real-valued random variables, it was known much earlier;
see the notes to Section 12.3 in RAP.
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