This book is an introduction to integrability and conformal field theory in two dimensions using quantum groups. The book begins with a brief introduction to S-matrices, spin chains and vertex models as a prelude to the study of Yang–Baxter algebras and the Bethe ansatz. The basic ideas of integrable systems are then introduced, with particular emphasis on vertex and face models. Special attention is given to explaining the underlying mathematical tools, including braid groups, knot invariants and towers of algebras. The book then goes on to give a detailed introduction to quantum groups as a prelude to chapters on integrable models, two-dimensional conformal field theories and super-conformal field theories. The book contains many diagrams and exercises to illustrate key points in the text.

This book will be of use to graduate students and researchers in theoretical physics and applied mathematics interested in integrable systems, string theory and conformal field theory.
CAMBRIDGE MONOGRAPHS ON MATHEMATICAL PHYSICS

General Editors: P. V. Landshoff, D. R. Nelson, D. W. sciama, S. Weinberg

QUANTUM GROUPS IN TWO-DIMENSIONAL PHYSICS
QUANTUM GROUPS IN TWO-DIMENSIONAL PHYSICS

CÉSAR GÓMEZ
Consejo Superior de Investigaciones Científicas, Madrid

MARTÍ RUIZ-ALTABA
Université de Genève

GERMÁN SIERRA
Consejo Superior de Investigaciones Científicas, Madrid
A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Gómez, César.
Quantum groups in two–dimensional physics / César Gómez, Martí Ruiz–Altaba, Germán Sierra.
p. cm. – (Cambridge monographs on mathematical physics)
Includes bibliographical references and index.
ISBN 0 521 46065 4 (hc)
III. Title. IV. Series.
QC20.7.G76G66 1996
530.1′43’0151255–dc20 95–32598 CIP

ISBN 978-0-521-46065-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third–party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.
A nuestras niñas

Ana, Camila, Laura, Marina, Martina y Pepa
Contents

Preface xiv

1 S-matrices, spin chains and vertex models 1
1.1 Factorized S-matrix models 1
1.1.1 Zamolodchikov algebra 5
1.1.2 Example 7
1.2 Bethe's diagonalization of spin chain hamiltonians 10
1.3 Integrable vertex models: the six-vertex model 14
Exercises 25
Appendix A Form factors 28
A1.1 Introduction to Smirnov's program 28
A1.2 Form factors at work: the Ising model 31
Exercise 33

2 The Yang–Baxter equation: a first look 34
2.1 The Yang–Baxter algebra 34
2.1.1 The \mathcal{R}-matrix and the Yang–Baxter equation 34
2.1.2 The monodromy matrix 38
2.1.3 Co-product and the Yang–Baxter algebra 39
2.1.4 Algebraic Bethe ansatz 41
2.2 Yang–Baxter algebras and braid groups 47
2.3 Yang–Baxter algebras and quantum groups 51
2.3.1 The \mathcal{R}-matrix as an intertwiner 53
2.3.2 A first contact with affine Hopf algebras 55
2.4 Descendants of the six-vertex model 58
2.4.1 Descent procedure 58
2.4.2 Bethe ansatz for descendant models 61
2.5 Comments 66
2.5.1 Explanation of our conventions 66
2.5.2 On parametrizations of the six-vertex weights 67
Exercises 67

3 Bethe ansatz: some examples 71
3.1 Introduction and summary 71
3.2 The phase structure of the six-vertex model 73
Contents

3.3 Low lying excitations 78
 3.3.1 Strings and holes 78
 3.3.2 Dispersion relations 83
3.4 Integrable higher-spin chains 83
 3.4.1 Hidden symmetry 85
3.5 Integrability in a box: open boundary conditions 88
 3.5.1 Vertex models: the Sklyanin equation 88
 3.5.2 Spin chains: the Bethe ansatz 92
3.6 Hamiltonians with quantum group invariance 96
3.7 Spin-1 chains 98
Exercises 102

4 The eight-vertex model 108
4.1 Definitions and Yang–Baxter relations 108
4.2 Bethe ansatz solution 111
 4.2.1 A smart change of basis 112
 4.2.2 Eight-vertex Yang–Baxter algebra 116
4.3 Reference state and \(\theta \) parameter 118
 4.3.1 Further comments on the \(\theta \) parameter 120
Exercises 121
Appendix B Elliptic functions 125
Exercises 128
Appendix C Sklyanin algebra 130
Exercises 132

5 Face models 134
5.1 Weights and graphs: the definitions 134
5.2 Trigonometric solutions 137
 5.2.1 Bratelli diagrams 137
 5.2.2 Yang–Baxter operators 138
 5.2.3 The Temperley–Lieb–Jones algebra 139
 5.2.4 Towers of algebras associated with a graph 140
 5.2.5 The algebra of face observables 144
 5.2.6 The trigonometric solution for Coxeter models 146
5.3 Elliptic solutions 148
 5.3.1 An example: the Ising model 148
 5.3.2 Restricted and unrestricted models 154
5.4 Fusion for face models 155
5.5 The corner transfer matrix 158
Exercises 160
Appendix D Knots and integrable models 165
D5.1 Introduction: the Jones polynomial 165
D5.2 Markov moves 168
D5.3 Markov traces for the Hecke algebra 170
Contents

D5.4 The Burau representation 172
D5.5 Extended Yang–Baxter systems 173
Exercises 176
Appendix E Spin models 177
E5.1 Factors and subfactors 177
E5.2 Spin models 180
Exercises 183

6 Quantum groups: mathematical review 184
6.1 Hopf algebras 184
6.2 Quasi-triangular Hopf algebras 186
6.3 Drinfeld’s quantum double 187
6.4 The quantum group $U_q(sl(2))$ 189
 6.4.1 Quantum double construction 189
 6.4.2 Irreducible representations 194
6.5 Centralizer and Hecke algebra 201
 6.5.1 Representations of $H_n(q)$ 203
6.6 Link invariants from quantum groups 205
6.7 The quantum group $U_q(SU(2))$ 207
6.8 R-matrices: an incomplete catalog 208
6.9 Classical Yang–Baxter equation 210
6.10 Affine quantum groups 211
6.11 Quasi-Hopf algebras 218
Exercises 219

7 Integrable models at roots of unity 228
7.1 Mathematical preliminaries 228
 7.1.1 The center of $U_q(sl(2))$ 228
 7.1.2 Finite-dimensional irreps 229
 7.1.3 The co-adjoint action 231
 7.1.4 Intertwiners 234
7.2 A family of R-matrices 235
 7.2.1 Highest weight intertwiner 235
 7.2.2 The nilpotent R-matrix 238
7.3 Nilpotent hamiltonians 240
7.4 Bethe ansatz 244
7.5 The limit $\ell \to \infty$ 250
 7.5.1 Quantum harmonic oscillators 251
 7.5.2 Link invariants 252
7.6 The chiral Potts model 252
 7.6.1 Star-triangle relations 255
 7.6.2 The associated spin chain hamiltonian 258
 7.6.3 Self-dual chiral Potts models 260
 7.6.4 Super-integrable chiral Potts models 262
Contents

xii

7.6.5 The quantum symmetry 263
7.7 Solving the Yang–Baxter equation 268
Exercises 269

8 Two-dimensional conformal field theories 272
8.1 Introduction: critical phenomena 272
8.2 Renormalization group 272
8.3 Examples 275
 8.3.1 The one-dimensional Ising model 275
 8.3.2 The gaussian model 278
8.4 Operator algebra of a universality class 280
8.5 Conformal invariance and statistical mechanics 281
8.6 The two-dimensional conformal group 282
8.7 Representations of the Virasoro algebra 286
8.8 Decoupling of null vectors 291
 8.8.1 The Kac formula 292
 8.8.2 Conformal Ward identities 294
 8.8.3 Minimal models 295
8.9 Fusion algebra 299
8.10 Finite-size effects 300
Exercises 304

9 Duality in conformal field theories 308
9.1 Monodromy invariance 309
9.2 Conformal blocks and chiral vertex operators 311
9.3 Sewing 314
9.4 Braiding and fusion 319
9.5 Conformal field theories and towers of algebras 323
9.6 Genus one polynomial equations 327
Exercises 336

10 Coulomb gas representation 340
10.1 Free and Feuks scalar fields 340
10.2 Screening charges in correlation functions 344
 10.2.1 Braiding matrices: an explicit example 348
 10.2.2 Contour techniques 350
10.3 Lagrangian approach 353
10.4 Wess–Zumino models 355
 10.4.1 The Knizhnik–Zamolodchikov equation 355
 10.4.2 Free field representation of Wess–Zumino models 359
 10.4.3 The Goddard–Kent–Olive construction 363
10.5 Magic corner transfer matrix 365
Exercises 366
Appendix F Vertex operators 373
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Quantum groups in conformal field theory</td>
<td>376</td>
</tr>
<tr>
<td>11.1 The hidden quantum symmetry</td>
<td>376</td>
</tr>
<tr>
<td>11.2 Braiding matrices and quantum $6j$ symbols</td>
<td>381</td>
</tr>
<tr>
<td>11.3 Ribbon Hopf algebras</td>
<td>384</td>
</tr>
<tr>
<td>11.4 The contour representation of quantum groups</td>
<td>386</td>
</tr>
<tr>
<td>11.4.1 Screened vertex operators</td>
<td>386</td>
</tr>
<tr>
<td>11.4.2 Examples</td>
<td>390</td>
</tr>
<tr>
<td>11.4.3 The quantum group</td>
<td>392</td>
</tr>
<tr>
<td>11.4.4 The \mathcal{R}-matrix</td>
<td>396</td>
</tr>
<tr>
<td>11.4.5 Chiral vertex operators</td>
<td>400</td>
</tr>
<tr>
<td>11.5 The quantum group of $SU(2)_k$</td>
<td>401</td>
</tr>
<tr>
<td>11.5.1 The \mathcal{R}-matrix</td>
<td>407</td>
</tr>
<tr>
<td>11.5.2 Fusion rules and chiral vertex operators</td>
<td>409</td>
</tr>
<tr>
<td>11.5.3 On intertwiners: a clarification</td>
<td>413</td>
</tr>
<tr>
<td>11.6 The quantum group of minimal models</td>
<td>413</td>
</tr>
<tr>
<td>Exercises</td>
<td>415</td>
</tr>
<tr>
<td>Appendix G Super-conformal field theories</td>
<td>422</td>
</tr>
<tr>
<td>G11.1 Super-conformal transformations</td>
<td>422</td>
</tr>
<tr>
<td>G11.2 Representations</td>
<td>424</td>
</tr>
<tr>
<td>G11.3 $N = 2$ super-conformal algebras</td>
<td>425</td>
</tr>
<tr>
<td>G11.4 $N = 2$ irreps and the chiral ring</td>
<td>426</td>
</tr>
<tr>
<td>G11.5 $N = 2$ topological theories</td>
<td>429</td>
</tr>
<tr>
<td>G11.6 Perturbed chiral ring</td>
<td>430</td>
</tr>
<tr>
<td>G11.7 Landau–Ginsburg description</td>
<td>432</td>
</tr>
<tr>
<td>G11.8 Quantum groups and solitons</td>
<td>434</td>
</tr>
<tr>
<td>Exercise</td>
<td>437</td>
</tr>
<tr>
<td>References</td>
<td>439</td>
</tr>
<tr>
<td>Index</td>
<td>452</td>
</tr>
</tbody>
</table>
Preface

Satius est supervacua discern quam nihil

Seneca

This book addresses the need among theoretical physicists and mathematicians for a modern, intuitive and moderately comprehensive introduction to the subject of integrable systems in two dimensions, one plus one or two plus zero. The requisite background for reading this book profitably amounts to elementary quantum field theory and statistical mechanics, in addition to basic group theory. We have tried to present all the material, both standard and new, in modern language and consistent notation.

It is perhaps still premature to evaluate the real physical impact of string theory, but it is certainly true that the current renaissance of two-dimensional physics owes much to the string wave. Traditionally, physics in two dimensions was considered a theoretical laboratory, the realm of toy models. Only after the recent work on string theory did two-dimensional quantum field theories graduate from pedagogical simplifications to serious candidates for the understanding of nature: physics in the purest aristotelian sense.

Independently of how much truth lies within string theory or elsewhere, a beautiful feature of physics in two dimensions is of course its mathematical richness. Astonishingly, almost any branch of mathematics becomes relevant in the study of two-dimensional field theories. The main physical reason for such mathematical inflation is the existence of non-trivial completely integrable two-dimensional field theories. More technically, the wonders of two dimensions have their origin in the powerful artillery of complex analysis. It is remarkable that so much of what we now understand in great generality was already contained in Onsager’s solution (1944) of the two-dimensional Ising model. In particular, he discovered the star-triangle relation, now called the Yang–Baxter equation.

At the root of integrability we find a kind of trivial dynamics, described by factorizable S-matrices. This dynamics, implying infinite-dimensional symmetries, takes its most concrete expression in the wonderful Yang–Baxter equation, linking solvable two-dimensional models in statistical mechanics and quantum field theory to knot invariants and quantum groups.
Preface

The Yang–Baxter equation was originally formulated as a condition that the basic quantities of the model (be it Boltzmann weights, scattering matrices, or braiding matrices) should satisfy in order for the theory to be solvable. Later on, it was realized that there exists a hidden symmetry underlying the trigonometric and rational solutions to the Yang–Baxter equation. This hidden symmetry is captured by a new concept in mathematics, the quantum group, which unifies the framework of two-dimensional exact models. History teaches us that whenever a new kind of symmetry is discovered, a revolution is knocking at the door of knowledge. In these revolutionary times, new ideas abound and the dust has not yet begun to settle in order to distinguish more clearly what is truly revolutionary from what is fashionable opportunism; we feel nevertheless that rephrasing the Yang–Baxter equation in terms of a symmetry is of enormous epistemological relevance.

Although quantum groups were born from integrability, providing us with an algebraic explanation for the Yang–Baxter equation in terms of symmetry, they constitute such an interesting conceptual breakthrough that the whole subject of integrable models deserves a re-examination in their light. The tender age of quantum groups (about ten years old at the time of this writing) hides somewhat the fact that, albeit in disguise, they had already surfaced earlier in physics and mathematics, for example in the discrete calculus associated with q-numbers. Much work remains to be done in the development of quantum groups, now a coherent foundation upon which fancier towers may be built. A major challenge, for instance, is to understand the elliptic solutions to the Yang–Baxter equation, notably that to the eight-vertex model, in the quantum group language.

Already, the deeper understanding of integrability afforded by quantum groups has allowed the construction of new integrable models. The old and historic models, such as the Heisenberg, the sine–Gordon, or the six-vertex models, have thereby multiplied into quantum group descendants, and the growing family is still not complete. Let us stress that, for the time being, quantum groups have remained confined to two-dimensional physics: either two non-relativistic spatial dimensions (statistical mechanics) or one time and one space (quantum field theory). Higher dimensional applications of quantum groups are perhaps possible though at any event very rare, due perhaps to the difficulty of finding integrable models in dimensions higher than two. Most likely, the quantum group symmetry is intimately tied with two dimensions, and any extension to other dimensions of the quantum group technology will call for a different algebraic structure. However desirable a priori these extensions might appear, the perfect uniqueness of strings takes away much of the motivation for looking anywhere else than two dimensions for fundamental structures, and thus the research program around quantum groups acquires even more urgency and appeal.

The above considerations explain the ideology behind this book, which attempts to distill the structure of quantum groups from two-dimensional physics and, conversely, to frame physical questions in a formalism such that quantum groups
may provide us with the answers. Were the various topics in this book not so closely linked by quantum groups, one would dare call our work an interdisciplinary effort between physics and mathematics, but given the environment of prime interest to us it is perhaps best to speak of a physics book with mathematical applications. In the spirit of the Vienna circle, mathematical physics should be considered as synonymous with formalization. Nevertheless, in our days mathematical physics is approaching criticism and shying away from the old-fashioned aim of axiomatization. For a critic, the material consists typically of works of art, and the goal is to find the clues to provide new and unifying points of view. In this sense, this book is closer in spirit to modern criticism than to canonical formalization. Our corpus is made out of two-dimensional theoretical physics. The chosen outlook hinges on the symmetry clue: we rely on quantum groups to extend our understanding of symmetries in physics. Recalling the French Anatolian saying that a good critic is somebody who describes their adventures among masterpieces, we can only hope that this book provides the reader with a pleasant tour.

We start with an introduction to integrable vertex models: in chapters 1 and 2 we introduce factorized S-matrices, the Bethe ansatz and the Yang–Baxter equation, along with the basic concepts about quantum groups. Chapter 3 reviews the Bethe ansatz solution to some simple spin chain hamiltonians. It also includes a few words on more general spin chains, and its last sections present boundary effects and Sklyanin's algebra. Chapters 4 and 5 serve to introduce the reader to some mathematical tools not generally known to practicing physicists, while discussing the algebraic Bethe ansatz solution to the eight-vertex model and, thus motivated, the face models. The trigonometric solution to the latter is presented in the general framework of the Temperley–Lieb–Jones algebra, complemented by an appendix on knot theory and another one on finite-dimensional subfactors. Chapter 6, the mid-point of the book, contains most of the necessary mathematical information about quantum groups, both finite and affine. In chapter 7 we turn to the representation theory of quantum groups at roots of unity and present several physical applications thereof, with an emphasis on explicit calculations. Chapter 8 introduces the reader to the universal behavior of second order phase transitions, conformal field theory, and the decoupling of null vectors. Chapter 9 exploits the concepts introduced along the book to study the duality structure of rational conformal field theories. Chapter 10 proceeds to the free field representation of these theories and introduces also the simplest Wess–Zumino models. Finally, in chapter 11, we use the free field realization of rational conformal field theories to discuss their quantum symmetries.

To keep the book to a reasonable size, we have been forced to make some painful choices. Quite a few relevant topics have been discussed only very briefly – we hope that the appendices and the exercises will fill these gaps to some extent. Each of the chapters ends with a very brief bibliographical overview for further reading. We have not made any attempt at comprehensiveness, and we cite only
Preface

essential major works that we have actually used. These references should serve the reader as an introduction to the vast literature available.

In the last few years, each of us has given various series of lectures on quantum groups, conformal field theory and integrable models in different places. This volume is an outgrowth of the course which one of us (C.G.) taught at the Troisième Cycle de Physique de la Suisse Romande during the spring of 1990, and it owes much to the feedback provided by a number of eager and inquisitive audiences.

This book was invented, as a non-existing object, by Henri Ruegg. Only thanks to his insistent prodding does it now become part of a reality, as realities occur in a Borges universe.

We have learned this physics from many colleagues. In particular, we wish to mention Luis Alvarez-Gaumé with whom we started the study of conformal field theories and quantum groups several years ago, Alexander Berkovich, who shared with us his knowledge of the Bethe ansatz, and Cupatitzio Ramirez, with whom we developed the contour picture of quantum groups. We would also like to acknowledge interesting scientific discussions with Rodolfo Cuerno, Tetsuji Miwa, Carmen Núñez and Philippe Zaugg.

Finally, we wish to acknowledge the support of the whole Theoretical Physics Department at the University of Geneva, and of the Fonds National Suisse pour la Recherche Scientifique.

Genève