Taponomy studies the transition of organic matter from the biosphere into the geological record. It is particularly relevant to zooarchaeologists and paleobiologists, who analyze organic remains in the archaeological record in an attempt to reconstruct hominin subsistence patterns and paleoecological conditions. In this user-friendly, encyclopedic reference volume for students and professionals, R. Lee Lyman, a leading researcher in taphonomy, reviews the wide range of analytical techniques used to solve particular zooarchaeological problems, illustrating these in most cases with appropriate examples. He also covers the history of taphonomic research and its philosophical underpinnings. Logically organized and clearly written, the book is an important update on all previous publications on archaeological faunal remains.
VERTEBRATE TAPHONOMY
Cambridge University Press
0521458404 - Vertebrate Taphonomy
R. Lee Lyman
Frontmatter
More information

Cambridge Manuals in Archaeology

Series editors
Don Brothwell, University of London
Graeme Barker, University of Leicester
Denis D'Inzeo, University of Massachusetts, Amherst
Ann Stahl, State University of New York, Binghamton

Already published
J.D. Richards and N.S. Ryan, Data processing in archaeology
Simon Hillson, Teeth
Alwynn Wheeler and Andrew K.G. Jones, Fishes
Peter G. Dorrell, Photography in archaeology and conservation
Lesley Adkins and Roy Adkins, Archaeological illustration
Marie-Agnès Courty, Paul Goldberg and Richard MacPhail, Soils and micromorphology in archaeology
Clive Orton, Paul Tyers and Alan Vince, Pottery in Archaeology

Cambridge Manuals in Archaeology are reference handbooks designed for an international audience of professional archaeologists and archaeological scientists in universities, museums, research laboratories, field units, and the public service. Each book includes a survey of current archaeological practice alongside essential reference material on contemporary techniques and methodology.
VERTEBRATE TAPHONOMY

R. Lee Lyman
Department of Anthropology
University of Missouri-Columbia
PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 8RU, UK
40 West 20th Street, New York, NY 10011 4211, USA
10 Stamford Road, Oakleigh, VIC 3166, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 1994

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1994

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data
Lyman, R. Lee.
Vertebrate taphonomy / R. Lee Lyman.
 p. cm. — (Cambridge manuals in archaeology)
Includes bibliographical references and index.
 I. Title. II. Series.
CC795.A5L96 1994 93–28675
930.1'0285—dc20 CIP

ISBN 0 521 45215 5 hardback
ISBN 0 521 45840 4 paperback

Transferred to digital printing 2004

se
To Barbara, John, and Michael
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of figures</td>
<td>xiii</td>
</tr>
<tr>
<td>List of tables</td>
<td>xx</td>
</tr>
<tr>
<td>Preface</td>
<td>xxiii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxvi</td>
</tr>
<tr>
<td>1 WHAT IS TAPHONOMY?</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>On the analysis of archaeological faunal remains</td>
<td>2</td>
</tr>
<tr>
<td>Basic concepts</td>
<td>3</td>
</tr>
<tr>
<td>Goals of taphonomic analysis in zooarchaeology</td>
<td>5</td>
</tr>
<tr>
<td>The challenge of taphonomy</td>
<td>6</td>
</tr>
<tr>
<td>Taphonomy’s contribution to zooarchaeology</td>
<td>7</td>
</tr>
<tr>
<td>Terminology used in this book</td>
<td>8</td>
</tr>
<tr>
<td>What this book is and what it is not</td>
<td>9</td>
</tr>
<tr>
<td>2 THE HISTORY AND STRUCTURE OF TAPHONOMY</td>
<td>12</td>
</tr>
<tr>
<td>A brief history of taphonomic research</td>
<td>12</td>
</tr>
<tr>
<td>On the structure of taphonomy: a personal view</td>
<td>34</td>
</tr>
<tr>
<td>Summary and conclusion</td>
<td>39</td>
</tr>
<tr>
<td>3 TAPHONOMY IN PRACTICE AND THEORY</td>
<td>41</td>
</tr>
<tr>
<td>Introduction</td>
<td>41</td>
</tr>
<tr>
<td>Examples of taphonomic analysis</td>
<td>41</td>
</tr>
<tr>
<td>Uniformitarianism and actualism</td>
<td>46</td>
</tr>
<tr>
<td>Actualism in archaeology and taphonomy</td>
<td>52</td>
</tr>
<tr>
<td>Analogy</td>
<td>64</td>
</tr>
<tr>
<td>Summary</td>
<td>68</td>
</tr>
<tr>
<td>4 STRUCTURE AND QUANTIFICATION OF VERTEBRATE SKELETONS</td>
<td>70</td>
</tr>
<tr>
<td>Introduction</td>
<td>70</td>
</tr>
<tr>
<td>Ontogeny and allometry</td>
<td>70</td>
</tr>
<tr>
<td>Skeletal tissues</td>
<td>72</td>
</tr>
</tbody>
</table>
Contents

Properties of skeletal tissues and taphonomy 82
Vertebrate skeletons 87
Modification of skeletal tissues and time of death 95
Quantification 97
Summary 112

5 VERTEBRATE MORTALITY, SKELETONIZATION, DISARTICULATION, AND SCATTERING 114
Introduction 114
Modes of death 115
The demography of mortality 115
The seasons of mortality 132
Skeletonization and disarticulation 135
Analysis of disarticulation and scattering 150
Summary 160

6 ACCUMULATION AND DISPERAL OF VERTEBRATE REMAINS 161
Introduction 161
Dispersal, scattering, and accumulation 161
Analyzing dispersal 168
Analyzing accumulation 189
Accumulation and dispersal as mirror images 219
Summary 220

7 FREQUENCIES OF SKELETAL PARTS 223
Introduction 223
Human utilization and transport of carcass parts 223
Structural density of bones 234
Differential transport versus differential survivorship 258
Within-bone nutrients 281
Reconstruction of ravaged assemblages 283
Other sources of variation in bone structural density 288
A final comment 289
Summary 292

8 BUTCHERING, BONE FRACTURING, AND BONE TOOLS 294
Introduction 294
Butchering 294
Fracturing of bones 315
Bone artifacts 338
Contents

Butchering, breakage, and bone tools 350
Summary 352

9 OTHER BIOSTRATINOMIC FACTORS 354
Introduction 354
Weathering 354
Root etching 375
Trampling 377
Abrasion 381
Burning 384
Other biological agents of bone modification 392
Preservation and size biasing 397
Comparative analytic techniques 398
Summary 402

10 BURIAL AS A TAPHONOMIC PROCESS 404
Introduction 404
Deposition and burial 406
Sedimentation 406
Burial processes 413
Spatial distribution of faunal remains 415
Summary 416

11 DIAGENESIS 417
Introduction 417
Mineralization, leaching, enrichment 419
Analysis of chemically altered bone 423
Sediment overburden weight 423
Post-burial movement 432
Summary 433

12 TAPHONOMY OF FISH, BIRDS, REPTILES, AND AMPHIBIANS 434
Introduction 434
Fish taphonomy 434
Avian taphonomy 446
Reptilian and amphibian taphonomy 450
Summary 450

13 DISCUSSION AND CONCLUSIONS 452
Introduction 452
Multi-variate taphonomic analysis 453
A general theory of taphonomy? 463
Contents

Bibliography 466
Glossary of taphonomy terminology 502
Index 517
FIGURES

Figure

2.1. General relations of the subdisciplines of taphonomy relative to an animal’s life, death, and scientific recovery.
2.2. Modeled taphonomic history of a biotic community or life assemblage.
2.3. Medlock’s (1975) model of the taphonomic history of a faunal assemblage.
2.4. Frequencies of titles of taphonomic literature per decade.
2.5. Meadow’s (1981) model of the taphonomic history of a faunal assemblage.
2.6. Hesse and Wapnish’s (1985) model of a taphonomic history of a zooarchaeological assemblage of faunal remains.
2.7. Behrensmeyer and Kidwell’s (1985) model of a taphonomic history with relations of subdisciplines of taphonomy indicated.
2.8. Andrews’ and Cook’s (1985) model of a taphonomic history showing stages of modification.
3.1. Intersection of different kinds and intensities of historic (taphonomic) processes defining uniformitarianism, actualism, and catastrophism as paradigms for explaining the past.
3.2. Schematic representation of the transformation of an animal from being a living organism to being a fossil showing where particular bodies of theory are relevant, and general categories of transforms and contexts.
3.3. A model of (relational) analogical reasoning.
4.1. Schematic illustration of ossification and growth of endochondral long bone (tibia) of a mammal.
4.2. Structure of mammalian bone at different scales and levels of organization.
4.3. Microstructure of mammalian bone showing Haversian and lamellar bone.
4.4. Appearance and distribution of trabecular and compact bone in a mammalian long bone.
4.5. Cross section of a typical mammalian tooth showing major components and regions.

page

17
19
24
25
28
29
30
31
50
65
66
71
75
76
77
80
List of figures

4.6. Modeled relation of stress and strain, Young’s modulus of elasticity and point of failure. 84
4.7. North American bison (Bison bison) skeleton. 88
4.8. Generalized leporid or rabbit skeleton. 88
4.9. Generalized teleost fish skeleton. 89
4.10. Generalized frog (amphibian) skeleton. 90
4.11. Generalized turtle (reptile) skeleton. 91
4.12. Generalized snake (reptile) skeleton. 92
4.13. Generalized bird skeleton. 93
4.14. Directional terms for vertebrate skeletons. 94
4.15. Chronological relations of bone ontogeny, bone remodeling, death, and taphonomy. 95
4.16. Normed MNI per skeletal portion frequencies and normed MAU per skeletal portion frequencies for pronghorn antelope remains from 39FA83. 107
4.17. Bivariate scatterplot of MNI per skeletal portion frequencies and MAU per skeletal portion frequencies for pronghorn antelope remains from 39FA83. 108
4.18. Bivariate scatterplot of MNI per skeletal portion frequencies for left and right skeletal portions of pronghorn antelope from 39FA83. 109
5.1. Two basic types of age (mortality) profiles. 119
5.2. Age (mortality) profiles for a population with high mortality and recruitment. 122
5.3. Mortality profile for fossil horses. 123
5.4. Mortality profile for fossil antelope. 123
5.5. Mortality profile for archaeological deer remains. 124
5.6. Mortality profile for archaeological pronghorn antelope remains. 125
5.7. Expected and observed mortality profile for wapiti killed by the volcanic eruption of Mount St. Helens. 126
5.8. Three-pole graphing technique for assessing demographic (mortality) data. 129
5.9. Mortality profiles for African bovid remains from Klasies River Mouth and Elandsfontein. 130
5.10. Three-pole graph of mortality data from Klasies River Mouth and Elandsfontein. 131
5.11. Seasonality and mortality profiles for deer (Odocoileus spp.) remains from archaeological site 45DO189. 133
5.12. Seasonality and mortality profiles for deer (Odocoileus spp.) remains from archaeological site 45DO176. 134
5.13. A partial, articulated wapiti skeleton in situ. 136
5.14. Blumenschine’s (1986a, 1986b) consumption sequence plotted against flesh weight. 149
List of figures

5.15. Order of joint disarticulation at Casper and Horner II as determined by Hill’s (1979a, 1979b) method. 152
5.16. Proportion of articulated joints at Casper and Horner II as determined by Todd’s (1987b) method. 153
5.17. Bivariate scatterplot of index of skeletal disjunction and index of fragment disjunction against standardized meat weight yield for Horner II bison. 158
5.18. Bivariate scatterplot of index of skeletal disjunction and index of fragment disjunction against standardized marrow yield for Horner II bison. 159
5.19. Bivariate scatterplot of index of skeletal disjunction against index of fragment disjunction for Horner II bison. 159
6.1. Types of bone occurrence based on mortality type (individual, mass), bone accumulation agencies, transport, and duration of accumulation. 164
6.2. Classes of bone occurrence defined by dimensions of variability in accumulation agent (physical, biological), mortality (single individual, multiple individuals), accumulation action (passive, active), and duration of accumulation (short, long). 167
6.3. Equid mortality profiles for Magdalenian and Gravettian levels at Solutré, France. 169
6.4. Frequencies of equid skeletal parts in the Aurignacian level of Solutré, France. 170
6.5. Classification of bone dispersal groups according to current velocity and proximity to the site where bones begin transport by fluvial action. 173
6.6. Classification of bone shape based on axial ratios. 177
6.7. A mirror-image rose diagram showing azimuths of long axis of long bones. 179
6.8. Idealized stereographic projections of four possible distributions of long bone orientation and plunge or dip. 182
6.9. A stereographic projection of the horizontal and vertical orientation of five bones. 183
6.10. Distribution and orientation of wapiti carcasses killed by the volcanic eruption of Mount St. Helens. 184
6.11. Azimuth of wapiti carcasses killed by the volcanic eruption of Mount St. Helens. 185
6.12. Blumenschine’s (1986a) consumption sequence. 188
6.13. Frequencies of skeletal elements from carnivore kills and from a carnivore den plotted against Blumenschine’s (1986a) consumption sequence. 189
6.14. Relative frequencies of skeletal portions in different types of bone accumulations. 191
List of figures

6.15. Rodent gnawed bones. 196–7
6.16. Ratio of post-cranial to cranial skeletal parts accumulated and deposited by 19 species of raptors and mammals. 202
6.17. Ratio of distal to proximal limb elements accumulated and deposited by 19 species of raptors and mammals. 203
6.18. Proportion of complete limb elements in assemblages accumulated by selected raptors and mammalian carnivores. 204
6.19. Ragged and crenulated edges resulting from mammalian carnivores gnawing modern wapiti bones. 207
6.20. Pitting and punctures. 208
6.21. Punctures. 209
6.22. Furrow on a modern wapiti proximal femur. 210
6.23. Scooping out on two distal femora. 211
6.24. Digestive corrosion of first phalanges of domestic sheep. 211
6.25. Comparison of diameters of puncture marks on small mammal bones collected from a rockshelter, and the range of canine diameters of modern carnivores. 214
6.26. Attributes of modification to prey bones created by various African carnivores. 215
6.27. Bivariate scatterplots of relative frequencies of bones from small mammals and from large mammals on the African landscape against bone frequencies in a hominid settlement. 221
7.1. A family of strategies for utilizing and/or transporting animal carcass parts. 228–9
7.2. Scatterplot of caribou %MAU values from Anavik against caribou %MGUI values. 231
7.3. Scatterplot of Brain’s (1969) goat bone structural density values against the number of recovered goat bone specimens from a Hottentot village. 236
7.4. Anatomical locations of scan sites where photon absorptiometry measurements have been taken on ungulate bones. 240–1
7.5. Anatomical locations of scan sites where photon absorptiometry measurements have been taken on marmot bones. 242–3
7.6. Anatomical locations of scan sites where photon absorptiometry measurements have been taken on seal bones. 244–5
7.7. Scatterplot of %survivorship of deer skeletal parts from 45OK4 against bone mineral density values for deer. 249
7.8. Scatterplot of frequency of individual scan sites in one skeleton against bone mineral density values for deer. 251
7.9. Scatterplot of MAU frequencies of marmot skeletal parts from the White Mountains against bone mineral density values for marmots. 254
7.10. Scatterplot of MAU frequencies of marmot skeletal parts
List of figures

from the Salishan Mesa site against bone mineral density values for marmots.

7.11. Scatterplots of guanaco utility indices against guanaco bone density.

7.12. Scatterplots of %MAU frequencies of deer-size animal remains against the structural density of deer bones, the %MGUI for sheep, and the %MGUI for caribou.

7.13. All possible combinations (classes) of correlation coefficients between the %MAU of a bone assemblage, and both bone density and %MGUI.

7.14. Scatterplots of %survivorship of skeletal parts after ravaging by hyenas against sheep bone structural density and deer bone structural density.

7.15. Variation in scatterplots of %survivorship of skeletal parts after ravaging by hyenas against sheep %MGUI for long bone ends and for long bone shaft ends.

7.16. Scatterplots of MNE frequencies from for FLK Zinjanthropus assemblage.

7.17. Bar graph of %weight loss of cow bones over time.

7.18. NISP-to-MNE ratios plotted against within-bone nutrient index for two taxa.

7.19. Scatterplots of caribou bone observed and reconstructed frequencies against the caribou %MGUI.

7.20. Standardized food utility index for complete bones plotted against the %MAU of surviving sheep bones.

8.1. Examples of cut marks.

8.2. Distal metapodials showing locations of variously documented cut-marks.

8.3. Proportional frequencies of cut-marked specimens in selected anatomical categories.

8.5. Fracture edge morphology of a broken metacarpal illustrated using Biddick and Tomenchuk's (1975) system of polar coordinates and vertical planes.

8.6. Features of fracture surfaces shown on a bovid proximal metacarpal.

8.7. Loading points.

8.8. Bar graphs of three bone fragmentation attributes for three assemblages.

8.9. Variation in the proportion of complete skeletal elements between two taxa of owls.

8.10. Proportional frequencies of 1 cm size classes of long bone
List of figures

diaphysis fragments for two assemblages of deer bones. 335
8.11. A model of the relation between NISP and MNE in an assemblage of bones. 336
8.12. Prehistoric scapula awls from eastern Washington. 341
8.13. Pseudotools. 342
8.14. Scatterplot of MNE frequencies of selected bison bones against the bison food utility index. 349
8.15. Demography of mortality of mastodon carcasses reported by Fisher (1987). 350
9.2. Weathering profiles for carcasses dead 0.5 to 1 yr, carcasses dead 2.5 to 3 yr, carcasses dead 4 to 10 yr, and carcasses dead 10 to 15 yr. 365
9.3. Weathering profiles for two assemblages of bones. 368
9.4. Frequency distribution of percentages of bones per weathering stage in three assemblages. 370
9.5. Three-pole graph of bone weathering data for six assemblages from Olduvai Gorge and control assemblages of carcasses dead for known numbers of years. 372
9.6. Cumulative percent frequency distributions for weathering stages of bones in summed assemblages of Olduvai Gorge thin deposit sites and summed assemblages of Olduvai Gorge thick deposit sites. 373
9.7. Root etching on a sheep mandible. 376
9.8. Vertical frequency distribution of trampled artifacts. 378
9.9. Summary of changes to bone subjected to heating. 386
9.10. Cumulative percent of weight loss of fresh and burned bones placed in acid. 390
9.11. Regression of log of live weight against log of the ratio of number of individuals expected to number of individuals observed. 397
9.12. Scatterplot of % differences in frequencies of proximal and distal humeri against % differences in frequencies of proximal and distal tibiae. 400
9.13. Bone destruction graphs. 401
11.1. Bivariate scatterplot of NISP: MNI ratios per skeletal part for two bone assemblages. 428
11.2. Bar graph showing variation in completeness index values across seven small, compact bones from two sites. 430
11.3. Bivariate scatterplot of completeness index values for six small, compact bones. 431
List of figures

12.1. Proportional frequencies of salmonid cranial and post-cranial remains. 439
13.1. Example of graphic technique for summarizing and comparing taphonomic data for multiple assemblages. 459
TABLES

Table 2.1. Kinds of taphonomic data that should be recorded for vertebrate fossil remains.
4.1. Frequencies of major kinds of skeletal elements in different mammalian taxa.
4.2. FLK Zinjanthropus bovid limb bone data.
4.3. Frequencies of pronghorn antelope skeletal portions from site 39FA83.
4.4. Observed and expected MNI frequencies of pronghorn antelope skeletal portions from site 39FA83.
5.1. Life table for female Himalayan thar.
5.2. Life tables for two hypothetical populations of mammals.
5.3. Observed and expected frequencies of wapiti from catastrophic mortality resulting from volcanic eruption of Mount St. Helens.
5.4. Mortality data for two fossil assemblages.
5.5. Rank order of joint disarticulation in five mammalian taxa.
5.6. Sequence of damage to bones of ungulates exploited by North American wolves.
5.7. Ranked general consumption sequence.
5.8. Joint articulation data for bison bones from the Casper site and the Horner II site.
5.9. Index of skeletal disjunction and index of fragment disjunction for the Horner II bison remains.
6.1. Dimensions of variability in the process of bone accumulation.
6.2. Classes of variation in bone accumulation.
6.3. Alignment of types of bone occurrence with bone accumulation classes.
6.4. Criteria proposed by Wheat (1979) for distinguishing kill sites, processing sites, and consumption sites.
6.5. Mammalian skeletal elements grouped by their susceptibility to fluvial transport.

xx
List of tables

6.7. Fluvial transport index values and saturated weight index values for various taxa. 175
6.8. Observed and expected frequencies of 1084 bone specimens per 10° orientation class at Lubbock Lake. 180
6.9. Three-dimensional orientation data for five fictional long bones. 183
6.10. Gnawing damage to bones typical of four taxonomic groups of mammalian carnivores. 213
6.11. Frequencies of skeletal parts of two sizes of mammals from the landscape and from a hominin settlement. 220
7.1. Binford’s (1978) normed utility indices for domestic sheep and caribou. 226
7.2. MNE and MAU frequencies of caribou bones for two ethnoarchaeological sites. 230
7.3. Utility and transport indices for various taxa. 232
7.4. Utility indices for bone parts of various mammalian taxa. 233
7.5. Frequencies and structural density of goat bones, and measures of sheep bone density. 236
7.6. Average bone mineral densities for deer, pronghorn antelope, domestic sheep, bison, guanaco, and vicuna. 246–7
7.7. Average bone mineral densities for marmots and phocid seals. 248
7.8. Frequencies of representation of scan sites of deer bone from archaeological site 45OK4. 250
7.9. MAU values for the White Mountains marmots and the Salishan Mesa marmots, and corresponding scan sites for structural density values. 253
7.10. Traditional density scan sites and maximum density scan sites typically correlated with MAU values. 257
7.11. %MAU frequencies for deer-sized animals for site 45CH302. 260
7.12. MNE and %MAU frequencies for hyena-ravaged domestic sheep bones. 266
7.13. Frequencies of skeletal parts at FLK Zinjanthropus and complete bone utility index values. 271
7.14. Correlation coefficients between percent weight loss of skeletal parts due to carnivore gnawing over time, and bone structural density. 278
7.15. NISP to MNE ratios for selected parts. 282
7.16. Reconstructing caribou bone assemblages from Nunamiut sites. 286
7.17. Experimental data for bone transport and survivorship, and how those data would be treated in an archaeological context. 290
List of tables

8.1. Carcass resources exploitable by a faunal processor or human butcher. 295
8.2. Selected carcass-processing activities directed towards extracting consumable carcass resources. 295
8.3. Factors that influence utilized butchering techniques. 296
8.4. NISP and frequencies of cut-marked specimens in the FLK Zinjanthropus assemblage. 308
8.5. Frequencies of cut-marked meaty limb specimens and meta-podial specimens in the FLK Zinjanthropus collection. 312
8.6. Frequencies of cut-marked specimens in joint, and meaty limb shaft locations. 313
8.7. Fracture classification system of Davis (1985). 321
8.8. Frequencies of fracture attributes in three assemblages of human bones. 329
8.9. Frequencies of skeletal parts in raptor pellets. 332
8.10. MNE frequencies of bison bones recovered from the Phillips Ranch site. 348
9.1. Weathering stages in large and small mammals. 355
9.2. Kolmogorov-Smirnov D statistics between all possible pairs of carcass assemblages from major habitats. 362
9.3. Frequencies of weathered bones in six assemblages from Olduvai Gorge. 371
9.4. Frequencies of bone parts from selected sites. 399
10.1. Standard sediment size classes. 407
10.2. Depositional settings and attributes of sediments and sedimentary units. 408
11.1. Ratios of NISP:MNI per skeletal part in two assemblages. 427
11.2. Turbation processes influencing burial, exposure, and movement of fossils. 432
12.1. Average skeletal completeness ratios for various sized horizontal units and sites. 440
12.2. Structural density of coho salmon skeletal elements. 442
12.3. Summary of criteria for distinguishing culturally from naturally deposited assemblages of fish remains around large lakes. 445
13.1. Dimensions and attribute states for taphonomic analysis. 457
13.2. Definition of variables and listing of values per plotted variable. 460

PREFACE

When I started my studies of vertebrate faunal remains recovered from archaeological sites over twenty years ago, I had no idea what taphonomy was nor was I particularly concerned about what are today typically asked questions concerning the preservation and formation of the archaeofaunal record. But as I read the zooarchaeological literature while completing my doctoral dissertation in the mid-1970s, I found an increasing number of papers dealing with taphonomic issues. The fact that since then it has become increasingly difficult to keep up with the ever growing literature on taphonomy is something of a mixed blessing. It is a mixed blessing because (a) we are constantly realigning the relation between what we want to learn and what we think we can learn from the vertebrate faunal remains we recover from archaeological sites, and thus our conclusions tend to be much more strongly founded than even a decade ago (this is good), and (b) it is nearly impossible for any one analyst to conceive of all of the logically possible taphonomic problems that a single reasonably sized assemblage of vertebrate remains might present. The latter is not bad; it just means a taphonomist’s and zooarchaeologist’s (and thus my) job is much more difficult now than it was a mere decade ago. Simply put, the analysis of zooarchaeological remains is no longer the simple, straightforward task that it was in the 1960s or 1970s. Taphonomic research has found a home in zooarchaeology, and it is here to stay.

Today, the number of zooarchaeologists who simply identify the bones, tally them up, and write a report about what prehistoric hominids were eating, is diminishing. Most reports on zooarchaeological remains written in the past ten years contain a more or less detailed consideration of at least a few taphonomic issues. This book is about how taphonomic questions might be analytically addressed and, sometimes, answered. It is a book that I wanted to write ten years from now. However, when Ann Stahl talked to me in the Spring of 1991 about the possibility of writing it, I realized, upon reflection, that now (from May 1991 until January 1993) was just as good a time as later. In fact, the more I thought about it, the better the idea of writing it now became. Many of my friends and professional colleagues were working hard on important taphonomic problems, and virtually all of them were eager to tell me what they were working on and what they were learning. Writing the book would, I decided, be easy because of all of these wonderfully knowledgeable people, and there weren’t more of them than I could keep track of with a little effort. Any value
xxiv Preface

this book has is a tribute to all of those people who knowingly and unknowingly helped me with putting it together. For being a friend and taphonomic colleague as I wrote this book, I thank Diane Gifford-Gonzalez, Donald K. Grayson, Stephanie D. Livingston, Fiona Marshall, Dave N. Schmitt, and Mary C. Stiner. I especially thank Lee Ann Kreutzer for finding and sending me a couple of reprints at the last minute, and keeping me informed about her studies of bone density. Many other people have helped me over the years by reviewing some of my manuscripts and by always being ready to share ideas and reprints. For help in many ways taphonomic and zooarchaeologic, I thank Anna K. Behrensmeyer, Robert L. Blumenschine, Robson Bonnichsen, Luis A. Borrero, Virginia L. Butler, Gary Haynes, Jean Hudson, Eileen Johnson, Richard G. Klein, Curtis W. Marean, Duncan Metcalfe, Richard Morlan, James F. O’Connell, Paul W. Parmalee, James Savelle, Pat Shipman, Gentry Steele, and Lawrence C. Todd. There are, to be sure, many others whose talks I have heard and whose papers I have read; they have, no doubt, influenced my thoughts more than I realize.

Permission to reprint some of the illustrations that are critical to the volume was provided by several individuals doing important taphonomic research. To these individuals I can only say “I owe you one;” Peter Andrews, Anna K. Behrensmeyer, Lewis R. Binford, J. D. Currey, Diane Gifford-Gonzalez, Brian Hesse, Eileen Johnson, Lee Ann Kreutzer, Larry G. Marshall, Richard H. Meadow, Stanley Olsen, T. B. Parsons, Richard Potts, and Mary C. Stiner.

I have been given many opportunities to analyze and study archaeofaunal remains over the years. Without that breadth and depth of experience, this book would be much less than it is, and, I probably would not have written it. Frank C. Leonhardy and Carl E. Gustafson initiated my interest in bones, and Frank gave me the assemblage on which I cut my teeth. I am deeply saddened that his untimely death prevented his being here to see what he helped create. My early interests were fine tuned by Donald K. Grayson, who provided me access to several unique collections (including the Mount St. Helens crispy elk) and who knew when to let me figure out I was headed in the wrong direction and when to not waste time and tell me I was wrong. Other friends who provided boxes of bones for me to study include Kenneth M. Ames, David R. Brauner, Richard L. Bryant, Terry Del Bene, David T. Kirkpatrick, Dennis E. Lewarch, Michael J. O’Brien, Kenneth C. Reid, and Richard E. Ross. In particular, Jerry R. Galm has, over the past decade, seen to it that I didn’t go more than six months without receiving a box of bones in the mail; thanks, Jerry, for ensuring that I didn’t have to suffer withdrawal.

Many people helped in small but important ways. Gail Lawrence, Amy Koch, and Rob Dunn helped with some of the early word processing. Eugene Marino and Paul Picha helped with correspondence via the fax machine. Virginia L. Butler, James Cogswell, Dolores C. Elkin, Donald K. Grayson, and Paul Picha variously helped me obtain several hard-to-find articles and books,
Preface

and kept me up-to-date with what was coming off the presses. Michael B. Schiffer was always ready to visit and offer encouragement; thanks, Mike, for a copy of the tomato book. Gregory L. Fox made sure I went fishing occasionally during the early writing phases, and the students in my zooarchaeology class made sure I identified the big errors in some of my early reasoning. Ann Stahl and Anna K. Behrensmeyer provided helpful comments on an early draft of several chapters and thereby made sure I was on the right track. Ann subsequently read the entire manuscript, doing all of us a major service by ensuring that the more cumbersome sentences were revised. Linden Steele printed some of the photographs. The University of Missouri-Columbia, Department of Anthropology helped get some figures reproduced.

Finally, without the faith in my ability shown by my wife, Barbara, and the distractions provided by my sons John and Mike, it never would have been finished.

January 26, 1993
ACKNOWLEDGEMENTS

For permission to reproduce figures, I thank the following:

Figure 2.5, Richard Meadow; Figures 2.6, 4.4, and 4.14, Brian Hesse and Taraxacum Press; Figure 2.7, Anna K. Behrensmeyer and The Paleontological Society; Figure 2.8, Peter Andrews and The Royal Anthropological Institute; Figure 3.2, Diane Gifford-Gonzalez and Academic Press; Figure 3.3, Diane Gifford-Gonzalez and The Center for the Study of the First Americans; Figures 4.1 and 4.3, T. S. Parsons and W. B. Saunders Company; Figure 4.2, J. D. Currey and Edward Arnold Ltd.; Figures 4.9, 4.10, 4.11, 4.12, and 4.13, Stanley J. Olsen and the President and Fellows of Harvard College, Peabody Museum; Figure 6.1, Anna K. Behrensmeyer and Plenum Press; Figure 6.5, Anna K. Behrensmeyer and Harvard University, Museum of Comparative Zoology; Figures 6.10, 6.21a, and 6.22, Center for the Study of the First Americans; Figures 7.4 and 8.2, Academic Press; Figure 7.5, Academic Press, Ltd.; Figures 8.1a, 8.13a and 8.13b, Society for American Archaeology; Figure 8.4, Larry G. Marshall and The Center for the Study of the First Americans; Figure 8.6, Eileen Johnson and Academic Press; Figure 9.4, Richard Potts and Aldine de Gruyter; Figure 9.7, Lewis R. Binford and Academic Press.