Contents

__Preface__
Preface to the second edition
Preface to the first edition

1 Composition of soil
1.1 Description and classification of soil
1.2 Soil particles
1.3 Pore space
1.4 Water content
1.5 Clay minerals
1.6 Exchangeable cations
1.7 Distribution of ions at clay surfaces
1.8 Particle size analysis
1.9 Surface area of particles

2 Interaction of soil and water
2.1 Retention of water by the matrix
2.2 Potential energy of soil water
2.3 Units of potential
2.4 Water in relatively dry soil
2.5 Capillarity
2.6 Swelling
2.7 Effect of load on water retention
2.8 Hysteresis in the moisture characteristic

3 Measurement of water content and potential
3.1 Water content
3.2 Matric potential
Table of Contents

3.3 Combined matric and osmotic potential 69
3.4 Suitability of methods for use in the field 75

4 Principles of water movement in soil 79
4.1 Darcy’s law 79
4.2 Effect of porosity and pore size on the conduction of fluids 83
4.3 Flow through saturated soils 85
4.4 Flow through unsaturated soils 90
4.5 Hydraulic conductivity and soil water diffusivity 92
4.6 Flow through anisotropic soil 100
4.7 Movement of water under a temperature gradient 103

5 Distribution of water in soil 107
5.1 Infiltration from ponded water 107
5.2 Redistribution following infiltration 118
5.3 Steady-state infiltration through a soil draining to a stationary water table 123
5.4 Steady-state flow of water upwards during evaporation from the soil surface 126
5.5 Steady percolation of water into a layered soil 128
5.6 Infiltration from rainfall or sprinkler applications 131
5.7 Measurement of infiltration and associated parameters 134

6 Groundwater in soils and aquifers 140
6.1 Artificial drainage 140
6.2 Natural drainage 148
6.3 Groundwater drainage by pumped bore-holes 155
6.4 Nonsteady-state field drainage 159
6.5 Field measurement of hydraulic conductivity, transmissivity, and storage coefficients 162

7 The use of isotopes and other tracers in soil water and groundwater studies 172
7.1 Radioactive tracers 173
7.2 Stable isotopes 184
7.3 Chloride as a tracer 190
7.4 Artificially added tracers 197

8 Soil structure 199
8.1 Definition and description 199
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Biological agents in aggregation</td>
<td>201</td>
</tr>
<tr>
<td>8.3 Physical agents in aggregation</td>
<td>203</td>
</tr>
<tr>
<td>8.4 Pore space</td>
<td>207</td>
</tr>
<tr>
<td>8.5 Structure and permeability</td>
<td>212</td>
</tr>
<tr>
<td>8.6 Stability of structure of wet soil</td>
<td>217</td>
</tr>
<tr>
<td>8.7 Effects of soil constituents on stability</td>
<td>221</td>
</tr>
<tr>
<td>8.8 Practices and treatments affecting structure</td>
<td>224</td>
</tr>
<tr>
<td>9 Deformation of soil</td>
<td>229</td>
</tr>
<tr>
<td>9.1 Consistency</td>
<td>229</td>
</tr>
<tr>
<td>9.2 Strength</td>
<td>231</td>
</tr>
<tr>
<td>9.3 Effect of water on strength</td>
<td>236</td>
</tr>
<tr>
<td>9.4 Compression</td>
<td>239</td>
</tr>
<tr>
<td>9.5 Compaction by animals and machines</td>
<td>241</td>
</tr>
<tr>
<td>9.6 Deformation by swelling and shrinking</td>
<td>243</td>
</tr>
<tr>
<td>9.7 Break up of soil</td>
<td>245</td>
</tr>
<tr>
<td>10 Management of soil water</td>
<td>248</td>
</tr>
<tr>
<td>10.1 Storage of water in soil</td>
<td>248</td>
</tr>
<tr>
<td>10.2 Control of infiltration</td>
<td>251</td>
</tr>
<tr>
<td>10.3 Catchment hydrology</td>
<td>253</td>
</tr>
<tr>
<td>10.4 Overland flow</td>
<td>258</td>
</tr>
<tr>
<td>10.5 Control of evaporation</td>
<td>264</td>
</tr>
<tr>
<td>10.6 Irrigation</td>
<td>268</td>
</tr>
<tr>
<td>10.7 Drainage</td>
<td>271</td>
</tr>
<tr>
<td>11 Soil erosion and conservation</td>
<td>274</td>
</tr>
<tr>
<td>11.1 Issues involved in soil erosion</td>
<td>274</td>
</tr>
<tr>
<td>11.2 Approaches to soil erosion by water</td>
<td>275</td>
</tr>
<tr>
<td>11.3 Sedimentation and deposition</td>
<td>279</td>
</tr>
<tr>
<td>11.4 Rainfall detachment and re-detachment</td>
<td>282</td>
</tr>
<tr>
<td>11.5 Entrainment and re-entrainment by overland flow</td>
<td>288</td>
</tr>
<tr>
<td>11.6 A model of the entainment process</td>
<td>290</td>
</tr>
<tr>
<td>11.7 A model of the re-entrainment process and sediment concentration at the ‘transport limit’</td>
<td>291</td>
</tr>
<tr>
<td>11.8 Theory for entainment and re-entrainment acting together</td>
<td>297</td>
</tr>
<tr>
<td>11.9 Rainfall and flow-driven erosion processes acting together</td>
<td>299</td>
</tr>
<tr>
<td>11.10 Approximate erosion theory and its field application</td>
<td>301</td>
</tr>
</tbody>
</table>
11.11 Wind erosion 307
11.12 Models of soil erosion by wind 310
11.13 Principles of soil conservation 313

12 Chemical transport in soil 321
12.1 The transport of chemicals sorbed on eroded sediment 322
12.2 Soil salinity and its control 329
12.3 Quality of irrigation water 339
12.4 Introduction to miscible displacement 340
12.5 Transport of chemicals with water through the soil profile 349
12.6 Management of chemicals in soil 356

13 The physical environment of roots 358
13.1 Introduction 358
13.2 Resistance to penetration 358
13.3 Aeration 362
13.4 Soil temperature 369

14 Plants and soil water 377
14.1 Absorption of water by roots 377
14.2 Availability of water 381
14.3 Movement of solutes to roots 382
14.4 Water loss from plant foliage to the atmosphere 385
14.5 The water budget of grassland 393
14.6 The water budget of irrigated land 395
14.7 The water budget of forests 397

Appendixes 403
A. SI units and some conversion factors for other units 403
B. Miscellaneous data including some properties of liquid water at 20°C 404
C. The continuity equation 404

References 407
Index 446