This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A.N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such “fully developed turbulence” is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life.

First, a qualitative introduction is given to bring out the need for a probabilistic description of what is in essence a deterministic system. Kolmogorov’s 1941 theory is presented in a novel fashion with emphasis on symmetries (including scaling transformations) which are broken by the mechanisms producing the turbulence and restored by the chaotic character of the cascade to small scales. Considerable material is devoted to intermittency, the clumpiness of small-scale activity, which has led to the development of fractal and multifractal models. Such models, pioneered by B. Mandelbrot, have applications in numerous fields besides turbulence (diffusion limited aggregation, solid-earth geophysics, attractors of dynamical systems, etc). The final chapter contains an introduction to analytic theories of the sort pioneered by R. Kraichnan, to the modern theory of eddy transport and renormalization and to recent developments in the statistical theory of two-dimensional turbulence. The book concludes with a guide to further reading.

The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers. Elementary presentations of dynamical systems ideas, of probabilistic methods (including the theory of large deviations) and of fractal geometry make this a self-contained textbook.
TURBULENCE
THE LEGACY OF A.N. KOLMOGOROV
TURBULENCE
THE LEGACY OF A.N. KOLMOGOROV

URIEL FRISCH
Observatoire de la Côte d'Azur
Contents

Preface ... xi

CHAPTER 1
Introduction 1

1.1 Turbulence and symmetries 11
1.2 Outline of the book 11

CHAPTER 2
Symmetries and conservation laws 14

2.1 Periodic boundary conditions 14
2.2 Symmetries 17
2.3 Conservation laws 18
2.4 Energy budget scale-by-scale 21

CHAPTER 3
Why a probabilistic description of turbulence? 27

3.1 There is something predictable in a turbulent signal 27
3.2 A model for deterministic chaos 31
3.3 Dynamical systems 36
3.4 The Navier–Stokes equation as a dynamical system 37
CHAPTER 4

Probabilistic tools: a survey

4.1 Random variables .. 40
4.2 Random functions .. 45
4.3 Statistical symmetries .. 46
4.4 Ergodic results .. 49
4.5 The spectrum of stationary random functions 52

CHAPTER 5

Two experimental laws of fully developed turbulence

5.1 The two-thirds law .. 57
5.2 The energy dissipation law 67

CHAPTER 6

The Kolmogorov 1941 theory

6.1 Kolmogorov 1941 and symmetries 72
6.2 Kolmogorov's four-fifths law 76
 6.2.1 The Kármán–Howarth–Monin relation for anisotropic
turbulence ... 77
 6.2.2 The energy flux for homogeneous turbulence 79
 6.2.3 The energy flux for homogeneous isotropic turbulence . 81
 6.2.4 From the energy flux relation to the four-fifths law .. 84
 6.2.5 Remarks on Kolmogorov's four-fifths law 86
6.3 Main results of the Kolmogorov 1941 theory 89
 6.3.1 The Kolmogorov–Obukhov law and the structure func-
tions ... 89
 6.3.2 Effect of a finite viscosity: the dissipation range 91
6.4 Kolmogorov and Landau: the lack of universality 93
 6.4.1 The original formulation of Landau's objection 93
 6.4.2 A modern reformulation of Landau's objection 94
 6.4.3 Kolmogorov and Landau reconciled? 97
6.5 Historical remarks on the Kolmogorov 1941 theory 98
Contents ix

CHAPTER 7

Phenomenology of turbulence in the sense of Kolmogorov 1941

7.1 Introduction ... 100
7.2 Basic tools of phenomenology .. 101
7.3 The Richardson cascade and the localness of interactions 103
7.4 Reynolds numbers and degrees of freedom 106
7.5 Microscopic and macroscopic degrees of freedom 109
7.6 The distribution of velocity gradients 111
7.7 The law of decay of the energy .. 112
7.8 Beyond phenomenology: finite-time blow-up of ideal flow 115

CHAPTER 8

Intermittency

8.1 Introduction ... 120
8.2 Self-similar and intermittent random functions 121
8.3 Experimental results on intermittency 127
8.4 Exact results on intermittency .. 133
8.5 Intermittency models based on the velocity 135
8.5.1 The β-model .. 135
8.5.2 The bifractal model .. 140
8.5.3 The multifractal model .. 143
8.5.4 A probabilistic reformulation of the multifractal model 146
8.5.5 The intermediate dissipation range and multifractal
 universality .. 149
8.5.6 The skewness and the flatness of velocity derivatives
 according to the multifractal model 155
8.6 Intermittency models based on the dissipation 159
8.6.1 Multifractal dissipation .. 159
8.6.2 Bridging multifractality based on the velocity and mul-
 tifractality based on the dissipation 163
8.6.3 Random cascade models .. 165
8.6.4 Large deviations and multifractality 168
8.6.5 The lognormal model and its shortcomings 171
Contents

8.7 Shell models ... 174
8.8 Historical remarks on fractal intermittency models 178
8.9 Trends in intermittency research 182
 8.9.1 Vortex filaments: the sinews of turbulence? 185
 8.9.2 Statistical signature of vortex filaments: dog or tail? ... 188
 8.9.3 The distribution of velocity increments 192

CHAPTER 9

Further reading: a guided tour

9.1 Introduction .. 195
9.2 Books on turbulence and fluid mechanics 195
9.3 Mathematical aspects of fully developed turbulence 199
9.4 Dynamical systems, fractals and turbulence 203
9.5 Closure, functional and diagrammatic methods 206
 9.5.1 The Hopf equation .. 207
 9.5.2 Functional and diagrammatic methods 212
 9.5.3 The direct interaction approximation 217
 9.5.4 Closures and their shortcomings 219
9.6 Eddy viscosity, multiscale methods and renormalization 222
 9.6.1 Eddy viscosity: a very old idea 222
 9.6.2 Multiscale methods .. 226
 9.6.3 Applications of multiscale methods in turbulence 230
 9.6.4 Renormalization group (RG) methods 235
9.7 Two-dimensional turbulence 240
 9.7.1 Cascades and vortices .. 241
 9.7.2 Two-dimensional turbulence and statistical mechanics .. 243
 9.7.3 Conservative dynamics ‘punctuated’ by dissipative events 249
 9.7.4 From Flatland to three-dimensional turbulence 251

References .. 255
Author index ... 283
Subject index ... 289
Preface

Andrei Nikolaevich Kolmogorov’s work in 1941 remains a major source of inspiration for turbulence research. Great classics, when revisited in the light of new developments, may reveal hidden pearls, as is the case with Kolmogorov’s very brief third 1941 paper ‘Dissipation of energy in locally isotropic turbulence’ (Kolmogorov 1941c). It contains one of the very few exact and nontrivial results in the field, as well as very modern ideas on scaling, ideas which cannot be refuted by the argument Lev Landau used to criticize the universality assumptions of the first 1941 paper.

Revisiting Kolmogorov’s fifty-year-old work on turbulence was one goal of the lectures on which this book is based. The lectures were intended for first-year graduate students in ‘Turbulence and Dynamical Systems' at the University of Nice–Sophia–Antipolis. My presentation deliberately emphasizes concepts which are central in dynamical systems studies, such as symmetry-breaking and deterministic chaos. The students had some knowledge of fluid dynamics, but little or no training in modern probability theory. I have therefore included a significant amount of background material. The presentation uses a physicist’s viewpoint with more emphasis on systematic arguments than on mathematical rigor. Also, I have a marked preference for working in coordinate space rather than in Fourier space, whenever possible.

Modern work on turbulence focuses to a large extent on trying to understand the reasons for the partial failure of the 1941 theory. This ‘intermittency’ problem has received here considerable coverage. Kolmogorov himself became a pioneer in this line of investigation in 1961, following the work of his collaborator A.M. Obukhov (Kolmogorov 1961). Although some of their suggestions can be criticized as mathematically or physically inconsistent, their 1961 work has been and remains a major
Preface

source of inspiration. For pedagogical reasons, I have chosen to discuss historical aspects only after presentation of more recent work on ‘fractal’ and ‘multifractal’ models of turbulence.

Some of the material on Kolmogorov presented here has appeared in a special issue of the Proceedings of the Royal Society ‘Kolmogorov’s ideas 50 years on’, which also contains a whole range of alternative views on Kolmogorov and on what matters for turbulence research (Frisch 1991). Other useful references on Kolmogorov are the selected works (Tikhomirov 1991), the obituary (Kendall 1990), the review of the turbulence work of one of his close collaborators (Yaglom 1994) and the personal recollections concerned more with the mathematician and the man (Arnold 1994).

In an introductory course on turbulence, of about thirty hours of lecturing, many aspects had to be left out. I have included at the end of this book a guided tour to further reading as a partial remedy. It is also intended to convey briefly my — possibly very biased — views of what matters. No attempt has been made to present a balanced historical perspective of a subject now at least five centuries old (see p. 112); the reader will nevertheless find a number of historical sections and remarks and may discover for example that the concept of eddy viscosity was introduced in the middle of the nineteenth century (see p. 223).

More information on the organization of this book may be found in Section 1.2 (see p. 11).

The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geophysics and engineering, to professional scientists and engineers. Primarily, it is intended for those interested in learning about the basics of turbulence or wanting to take a fresh look at the subject. Much of the material on probabilistic background, on fractals and multifractals also has applications beyond fluid mechanics, for instance, to solid-earth geophysics.

I am deeply grateful to J.P. Rivet who in many respects has given life to this book and I am particularly indebted to A.M. Yaglom for numerous discussions and comments. Very useful remarks and suggestions were received from V.I. Arnold, G. Barenblatt, G.K. Batchelor, L. Biferale, M. Blank, M.E. Brachet, G. Eyink, H. Frisch, H.L. Grant, M. Hénon, J. Jiménez, R. Kraichnan, B. Legras, A. Migdal, G.M. Molchan, A. Noullez, K. Ohkitani, S.A. Orszag, A. Praskovsky, A. Pumir, Z.S. She, Ya. Sinai, J. Sommeria, P.L. Sulem, M. Vergassola, E. Villermaux and B. Villone. M.C. Vergne has realized some of the figures. I also wish to thank the students of the ‘DEA Turbulence et
Preface

Systèmes Dynamiques’ of the University of Nice–Sophia–Antipolis who have helped me with their questions, since I started teaching this material as a graduate course in 1990.

Part of the work for this book was done while I was visiting Princeton University (Center for Fluid Dynamics Research). Significant support was received from the ‘Direction des Recherches et Moyens Techniques’, from various programs of the European Union and from the ‘Fondation des Treilles’.

I would like to dedicate this new printing to Giovanni Paladin who died in a mountaineering accident on June 29, 1996.

Finally, it was a pleasure and a privilege to work in close collaboration with Alison, Maureen, Simon and Stephanie at Cambridge University Press.

Nice, France
July 1995

U. Frisch