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1 Order, Lattices and Domains

1.1 Introduction

DiscussioN 1.1.1  We shall begin by giving an informal description of some
of the topics which appear in Chapter 1. The central concept is that of an
ordered set. Roughly, an ordered set is a collection of items some of which are
deemed to be greater or smaller than others. We can think of the set of natural
numbers as an ordered set, where, for example, 5 is greater than 2, 0 is less than
100, 1234 is less than 12687 and so on. We shall see later that one way in which
the concept of order arises in computer science is by regarding items of data as
ordered according to how much information a certain data item gives us. Very
crudely, suppose that we have two programs P and P’ which perform identical
tasks, but that program P is defined (halts with success) on a greater number
of inputs than does P’. Then we could record this observation by saying that
P is greater than P’. These ideas will be made clearer in Discussion 1.5.1. We
can perform certain operations on ordered sets, for example we have simple
operations such as maxima and minima (the maximum of 5 and 2 in the ordered
set of natural numbers is 5), as well as more ‘complicated ones such as taking
suprema and infima. If the reader has not met the idea of suprema and infima,
then he will find the definitions in Discussion 1.2.7. We shall meet examples
of ordered sets with given properties; for example, the set of real numbers
has the property that the infimum and supremum of any bounded non-empty
subset of reals always ezist (bounded means that every element of the subset
is less than a given fixed real and greater than another fixed real). As well
as discussing ordered sets in themselves, we shall want to talk about relations
between ordered sets and in particular this will include different varieties of
function. We will also need to understand the idea that functions themselves
can be ordered. As an example, consider the function f on the natural numbers
which sends n to n+1, and g which sends n to n+4. Then on every argument,
the result of g is greater than that of f, and so we can regard g as greater than
f. This completes the informal description of the contents of this chapter. To
summarise, Chapter 1 deals with ordered sets, the properties they may have,
and relations and functions between ordered sets.

Before beginning in earnest, we shall give a slightly more formal description
of the contents of Chapter 1. The account begins with Discussion 1.2.1, which
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2 Chapter 1. Order, Lattices and Domains

contains a short and terse summary of background material on sets and func-
tions. The idea is simply to fix notation and ideas, and the summary is not a
leisurely exposition. We will not introduce every basic mathematical concept
that we will be using, but simply give some basic definitions just to give the
reader some familiarity with notation and style. For example, while “function”
is given a formal definition below (and fixes our notation for functions), it is
certainly assumed that the reader has some knowledge of functions, and knows
the meaning of injective and surjective function (for which we adopt no special
notation). Once the summary is complete, we proceed with discussions of the
basic definitions and properties of ordered sets. Different kinds of order are
discussed, and concepts such as maximum, greatest element, join and Hasse
diagram are defined. We also define the notion of monotone function. With
this, we are able to consider some of the most common structures which arise
in the theory of ordered sets, such as lattices, Heyting lattices and Boolean
lattices. Some basic examples are given, along with some very simple repre-
sentation theorems which provide information about the way such ordered sets
arise. In particular, we describe the idea of a closure system, which gives ex-
amples of ordered sets in which the order is given by subset inclusion. Finally
we move on to domain theory, once again giving simple examples and proving
representation theorems. We also give a number of technical results whose use
will only be seen in the later chapters of this book, where domains will provide
mathematical models of type theories.

1.2 Ordered Sets

Di1sCussIiON 1.2.1  We begin with a summary of basic naive set theory. If
A and X are sets, we write A C X to mean A is a subset of X, and A < x
to mean that A is a finite subset. A fotal function between a set X and a
set Y is a subset f C X x Y for which given any x € X there is a unique
y € Y such that (z,y) € f. Given z € X we write f(z) for the unique y such
that (z,y) € f. It will often be convenient to write z — f(z) to indicate that
(z, f(z)) € f; for example, if R is the set of real numbers, then the function f
between R and R, given by r — 72, is formally the subset

{(r,r*)|7reR}CR xR

Often we shall say that f is a function X — Y and write f: X — Y in place of
f € X xY. We shall say (informally) that X and Y are the source and target
of the function f. A function f: X — X with identical source and target is
called an endofunction on X. Given functions f: X — Y and g:Y — Z, we
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1.2. Ordered Sets 3

write gf or g o f for the function X — Z defined by z + g(f(z)). A partial
function between X and Y is a subset f C X X Y such that given any elements
(z,y) € f and (z,y') € f then y = ¢. If (z,y) € f, we write f(z) for y. If
f:X — Y is a partial function, and given z € X there is no y € Y for which
(z,y) € f, then we say that f is undefined at , or sometimes simply say that
f(z) is undefined. If f: X — Y is a function and S C X is a subset of X, then
we shall sometimes use the notation f(S) to represent the set {f(s) | s € S}.
If X and Y are any two sets, then the set X \Y o {r € X |z &Y} is the set
difference of Y from X. If X is a set, then | X| will denote the cardinality (size)
of X. A binary relation R on a set X is any subset RC X x X. If r,y € X,
then we will write zRy for (z,y) € R. R is reflezive if for any £ € X we
have zRzx; symmetric if whenever z,y € X then xRy implies yRz; transitive
if for any z,y,2 € X, whenever we have xRy and yRz then xRz; and anti-
symmetric if whenever z,y € X, xRy and yRz imply ¢ and y are identical.
R is an equivalence relation if it is reflexive, symmetric and transitive. Given
an equivalence relation R on X, the equivalence class of © € X is the set
[z] ¥ {y | y € X,zRy}. We write X/R for the set of equivalence classes
{[z] | # € X}. This completes the summary, and we now move on to the
definition of ordered sets.

A preorder on a set X is a binary relation < on X which is reflexive and
transitive. The relation < will sometimes be referred to informally as the
order relation on the set X. It will sometimes be convenient to write z > y
for y < z. If at least one of z < y and y < x holds, then z and y are said
to be comparable. If neither relation holds, then z and y are incomparable. A
preordered set (X, <) is a set equipped with a preorder, that is to say we are
given a set (in this case X) along with a preorder < on the set X; the set X is
sometimes called the underlying set of the preorder (X, <). Where confusion
cannot result, we refer to the preordered set X, or sometimes just the preorder
X. The preorder X is said to be discrete if any two distinct elements of X are
incomparable. If z < y and y < z then we shall write z & y and say that =
and y are isomorphic elements. Note that we can regard & as a relation on
X, which is in fact an equivalence relation. If (X, <x) is a preorder, we shall
write S C X to mean that the set S is a subset of the underlying set of X. Of
course, we can regard S as a preordered set (S, <g) by restricting the order
relation on X to S; more precisely, if 5,5’ € S, then s <g s' iff s <x s'. We
shall then say that S has the restriction order inherited from X. However, we
shall limit the force of the judgement S C X to mean that S is simply a subset
of the underlying set of X. The notation z < S will mean that for each s € S,
r < 8.
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4 Chapter 1. Order, Lattices and Domains

A partial order on a set X is a binary relation < which is reflexive, transitive
and anti-symmetric. A set X equipped with a partial order is called a partially
ordered set, or sometimes a poset. Thus a poset is a preorder which is anti-
symmetric. If z,y € X, where X is a poset, then we shall write z < y to
mean that x < y and z # y. Given a preorder X then the set of equivalence
classes X/ & can be given a partial ordering by setting [z] < [y] iff < y for
all z,y € X. The poset X/ 2 is called the poset reflection of X.

REMARK 1.2.2  We shall use informal pictures, known as Hasse diagrams,
to describe partially ordered sets. Roughly, in order to illustrate a finite poset
pictorially, we select a distinct point P(z) of the Euclidean plane R? for each
element z of the poset X and draw a small circle at P(z). If z < y in X and
there is no 2 € X with < z < y we draw a line segment I(x,y) joining the
circle at P(z) to the circle at P(y), such that the second coordinate of P(z)
is strictly less than the second coordinate of P(y). Ensure also that the circle
at P(z) does not intersect I(z,y) if 2 is different from z and y. For example,
consider the poset X with underlying set {a,b,c} wherea < ¢, b < ¢, a < a,
b < b and ¢ < c. We can draw the Hasse diagram

[

N

to represent X. Finally, note that while we can only use this procedure sen-
sibly for finite posets, in practice we shall draw “Hasse diagrams” of infinite
posets, making the exact meaning of the picture clear with accompanying
mathematics.

ExaMPLES 1.2.3

(1) The set of natural numbers, N, with the usual increasing order is a poset.
We will refer to this poset as the vertical natural numbers. Although this is
an infinite poset, we can draw a diagram to represent it:

oO—FH—010

(2) See Figure 1.1. Examples (a) and (b) are both finite posets. Example (c)
shows that the order in a finite poset can be quite involved. (d) is the poset
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1.2. Ordered Sets 5

© (d)
Figure 1.1: Some Examples of Posets.

which is “a copy of the natural numbers (as in example (1)) with a top element
added.” We will refer to this poset as the topped vertical natural numbers.
The underlying set of the poset is {0,1,2,3,... 00}.

(3) The set {A | A C X} of subsets of a set X is often written as P(X)
and is called the powerset of X. The powerset is a poset with order given by
inclusion of subsets, A C B. The order is certainly anti-symmetric, for if A
and A’ are subsets of X where A C A’ and A’ C A, then A = A'. Reflexivity
and transitivity are clear.

(4) Given preorders X and Y, their cartesian product has underlying set
XxY¥{(z,y)|zeX,yeY}
with order given pointwise, that is (z,y) < (¢/,¢') if z < 2/ and y < ¢/'.

(5) If X is a preorder, then X is the preorder with underlying set X and
order given by x < y iff y < z where z,y € X. We usually call X the
opposite preorder of X. Of course any poset is certainly also a preorder. The
following Hasse diagram is a picture of the opposite of the poset (b):

VN
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6 Chapter 1. Order, Lattices and Domains

Figure 1.2: Illustrating some Definitions.

DiscussioN 1.2.4 'We now give some more definitions. Suppose that X is a
preorder and A is a subset of X. An element z € X is an upper bound for A if
for every a € A we have a < z (or we can just write A < z, using the informal
notation given in Discussion 1.2.1). An element z € X is a lower bound for A
ifr < A. An element z € X is a greatest element of A if it is an upper bound
of A which belongs to A; z is a least element of A if it is a lower bound of A
and belongs to A. An element a € A is mazimal if for every b € A we have
a < b implies that a = b. An element a € A is minimal if for every b € A
we have b < a implies that b & a. We can prove a useful little result about
greatest and least elements:

PrOPOSITION 1.2.5 Let X be a preordered set and A a subset of X. Then
greatest and least elements of A are unique up to isomorphism if they exist.

PrROOF Let a and a’ be greatest elements of A. By definition, a is an upper
bound of A, and also o’ € A. Hence a’ < a. Similarly a < o/. Hence a = a'.
The proof for least elements is essentially the same. O

ExAMPLES 1.2.6

(1) Consider the posets illustrated in Figure 1.2. Of course, any poset is cer-
tainly a preorder, and we consider examples of the above definitions. In poset
X the elements 1 and 2 are maximal. In poset Y, the element 3 is a maximal
element which is the greatest element of Y. In poset Z, element 4 is greatest
and maximal in Z and 5 is maximal in the subset of Z indicated by the light
circles.
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1.2. Ordered Sets 7

(2) Consider the poset of natural numbers N with its usual increasing order
and the subset S & {25,65,100}. Examples of lower bounds for S are 0, 10

and 25, and examples of upper bounds are 100, 105, 1253 and 245.

DiscussioN 1.2.7  The notions of upper bound, maximal element and so on
give us mathematical tools for the description of the structure of preordered
sets. The reader is probably familiar with the everyday notions of maximum
and minimum, and our definitions of greatest and least elements correspond
to such notions. Unfortunately, such ideas are not quite general enough for
our purposes. We shall now define the concept of meet and join which is a
generalisation of the notion of maximum and minimum.

Let X be a preordered set and A C X. A join of A, if such exists, is a least
element in the set of upper bounds for A. A join is sometimes called the least
upper bound or a supremum. A meet of A, if it exists, is a greatest element
in the set of lower bounds for A. A meet is sometimes called the greatest
lower bound or infimum. Note that meets and joins are defined as greatest
and least elements; so from Proposition 1.2.5 we know that meets and joins
are determined up to isomorphism if they exist. If the subset A has at least
one join, then we will write \/ A for a choice of one of the joins of A. Similarly,
if the subset A has at least one meet, then we will write A A for a choice of
one of the meets of A. If we wish to draw attention to the ordered set with
respect to which a join and meet are being taken (in this case X } we shall
write Vx A and Ax A respectively. Note that the join is characterised by the
property that for every z € X we have V A < z iff A < z; this amounts to a
formal statement that a join is by definition a least element in a set of upper
bounds. Using the notation described on page xvi, we could also say that V A
is a join for the subset A C X if for every z € X we have

V A<z
A<z
Similarly, A A is a meet of a subset A of X if for every z € X we have
t<N\NA
z<A
Some special points deserve attention.

e Let X be a non-empty discrete preorder X, and A C X a non-empty subset.
Then A only has a meet or join if A is a singleton set. Clearly, for any x € X,
we have A{z} =z and V{z} = 2.
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8 Chapter 1. Order, Lattices and Domains

¢ Consider the empty set, @ C X. Then V @, if such exists, is written L and
is called a bottom of X. Note that a bottom element satisfies the property that
for any € X we have L < z. Similarly, A @, if such exists, is written T and
is called the top of X; it satisfies x € X impliesz < T.

e Consider a two element subset {a,b} C X. Write a V b for V{a, b} and call
this a (binary) join of @ and b. Similarly a A b is a (binary) meet of a and b.
If we unravel the definitions, it can be seen that binary joins are characterised
by the property that for every z € X we have aVb <z iff a < z and b < z;
and binary meets by asking that for any z € X we have x < aAbiff z < a
and z < b.

EXERCISE 1.2.8 Make sure you understand the definition of meet and join in
a preorder X. Think of some simple finite preordered sets in which meets and
joins do not exist. Now suppose that X is a poset (and thus also a preorder).
Show that meets and joins in a poset are unique if they exist.

DiscussION 1.2.9 A subset C of a preorder X is called a chain if for every
z,y € C we have z < y or y < z. We shall often simply refer to a chain in X.
C is called an w-chain if its elements can be indexed by the natural numbers,
say C def {zn | n € N}. C is an anti-chain if for every z,y € C then z < y
iff £ > y. A subset D of X is called directed if every finite subset of D has
an upper bound in D. Note that we regard the empty set as finite; thus any
directed subset is non-empty by definition. We say the poset X is directed if
any finite subset of X has an upper bound in X. A subset I of a preorder X
is inductive if given a directed subset D C X for which D C I then Vx D € I.
We shall say that a preorder X is a chain or anti-chain if the underlying set
X is such. Given a subset A of a preorder X, then the up-set of A is defined
to be A1 % {z € X | = > A} and the down-setis Al ¥ {z € X |z < A}. So
the up-set of A is the set of all upper bounds of A, and the down-set of A is
the set of all lower bounds of A. We shall write z| for {z}| and 1 for {z}1,
where z € X.

REMARK 1.2.10 This example shows why we take care with definitions in-
volving subsets of preorders and posets. Let X &f {,2,...,n,n+1,...,00, T}

be the poset with partial order “generated” by
1<2<3<4<5...<00<T.

Let I % X\ {oo} and let D % X \ {o0, T}, and refer to Figure 1.3. If we
preorder I with the restriction order from X (so that I is a copy of the topped
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-8—

e N — W —
e N — Q0 —— -
=N — W —

D 1 X
Figure 1.3: A Subset of a Poset which is not Inductive.

vertical natural numbers) then V; D exists in the preorder I and is T with
respect to this order; but I is not an inductive subset of X because \/x D = oo
which is not an element of I. It is sometimes tempting for beginners to glance
at a subset such as I and think it must be inductive with the restriction order.
See also Example 1.3.3.

EXERCISE 1.2.11  Let C and C’ be chains. Show that the set of pairs (c, ),
where c € C' and ¢/ € ', is also a chain when ordered lexicographically. Show
that the set of pairs with the pointwise order is a chain just in case at most
one of C or ¢’ has more than one element.

DiscussioN 1.2.12  The existence of meets and joins for certain kinds of
subsets of preordered sets is known as completeness and cocompleteness re-
spectively. If P is a property of a subset A of the preorder X, and meets
exist for all such subsets A, then we say that X is P-complete; dually X is P-
cocomplete if joins exist for subsets A with property P. For example, suppose
that X has binary meets and a top element. Then by induction it is easy to see
that X has meets of all finite subsets, and we say that X is finitely complete.
If X has joins of all directed subsets then it is said to be directed cocomplete,
and if X has joins of w-chains it is said to be w-cocomplete. If X has meets
or joins of all subsets then it is said to be complete or cocomplete respectively.
We can give a very useful result which states that a preorder X is complete if
and only if it is cocomplete:

LEMMA 1.2.13 A preorder X has all meets just in case it has all joins.
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10 Chapter 1. Order, Lattices and Domains

PROOF Suppose that A is any subset of X. Note that one has
ANAY\{z|ze Xandz < A} and \VAE A{z|z€ Xand A<z}

O

ExaMPLES 1.2.14

(1) Given a set X, the powerset poset P(X) is both complete and cocomplete.
Meets are given by intersections and joins by unions. The top element is of
course X and the bottom element &.

(2) Suppose that a preorder X is finitely complete and cocomplete, that is to
say X has meets and joins of all finite subsets. We regard the empty subset
as being finite and thus X has top and bottom elements.

DiscussiON 1.2.15 We now turn our attention to notions of relations be-
tween preordered sets, and in particular to functional relations. If we talk of a
function between the preordered sets X and Y we shall simply mean that we
are given a function between the underlying sets. Such a function is said to
be monotone if for =,y € X we have z < y implies f(z) < f(y); and antitone
if z < y implies f(y) < f(z). We often refer to such a monotone function
as a homomorphism of preorders. Roughly one thinks of a homomorphism as
a function which preserves structure; in the case of a preorder, this structure
is just the order relation. A monotone function may alternatively be called
an order preserving function. f is said to reflect order if given any z,y € X,
f(z) < f(y) implies z < y. The posets X and Y are isomorphic if there
are monotone functions f: X — Y and g:Y — X for which gf = idx and
fg = idy. The monotone function g is an inverse for f; and likewise f is an
inverse for g. We say that f is an isomorphism if such an inverse g exists. The
set X = Y is defined to have elements the monotone functions with source X
and target Y, that is functions X — Y. This set can be regarded as a preorder
by defining a relation f < g iff given any z € X we have f(x) < g(z), where
f,g: X — Y. This ordering is often referred to as the pointwise order. We
have the following proposition:

PROPOSITION 1.2.16 The identity function on any preordered set is mono-
tone, and the composition of two monotone functions is another monotone
function. Now let X, Y and Z be preordered sets. The composition function

(Y =Z)x (X =>Y) - (X = 2)
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