Table of Contents

Preface

1. E. Bizzi, N. Hogan, F. A. Mussa-Ivaldi, and S. Giszter
 The nervous system use equilibrium-point control to guide single and multiple joint movements?

2. S. C. Gandevia and D. Burke
 Does the nervous system depend on kinesthetic information to control natural limb movements?

3. D. A. McCrea
 Can sense be made of spinal interneuron circuits?

4. D. A. Robinson
 Implications of neural networks for how we think about brain function

 Do cortical and basal ganglionic motor areas use "motor programs" to control movement?

6. J. R. Bloedel
 Functional heterogeneity with structural homogeneity: How does the cerebellum operate?

7. E. E. Fetz
 Are movement parameters recognizably coded in the activity of single neurons?

8. J. F. Stein
 The representation of egocentric space in the posterior parietal cortex

Open Peer Commentary and Authors' Responses

Open Peer Commentary

<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adamovich, S. V.</td>
<td>How does the nervous system control the equilibrium trajectory?</td>
<td>102</td>
</tr>
<tr>
<td>Agarwal, G. C.</td>
<td>Movement control hypotheses: A lesson from history</td>
<td>103</td>
</tr>
<tr>
<td>Alexander, G. E.</td>
<td>Neurophysiology of motor systems: Coming to grips with connectionism</td>
<td>104</td>
</tr>
<tr>
<td>Andersen, R. A. and Brotchie, P. R.</td>
<td>Spatial maps versus distributed representations</td>
<td>105</td>
</tr>
<tr>
<td>Barmack, N. H., Errico, P. and Fagerson, M.</td>
<td>Microzones, topographic maps and cerebellar "operations"</td>
<td>107</td>
</tr>
<tr>
<td>Berkhubel, M. B., Sidorova, V. V., Smetanin, B. N. and Tkach, T. V.</td>
<td>Affenter influence on central generators and the integration of proprioceptive input with afferent input from other modalities</td>
<td>109</td>
</tr>
<tr>
<td>Beuter, A.</td>
<td>Modulation of kinesthetic information can be explored with nonlinear dynamics</td>
<td>110</td>
</tr>
<tr>
<td>Bischof, H. and Pinz, A. J.</td>
<td>Artificial versus real neural networks</td>
<td>110</td>
</tr>
<tr>
<td>Borrett, D. S., Yeap, T. H. and Kwan, H. C.</td>
<td>The nonlinear dynamics of connectionist networks: The basis of motor control</td>
<td>110</td>
</tr>
<tr>
<td>Bossut, D. F.</td>
<td>Implication of neural networks for how we think about brain function</td>
<td>112</td>
</tr>
<tr>
<td>Bower, J. M.</td>
<td>Is the cerebellum a motor control device?</td>
<td>112</td>
</tr>
<tr>
<td>Braatenberg, V. and Freial, H.</td>
<td>Why is the output of the cerebellum inhibitory?</td>
<td>113</td>
</tr>
<tr>
<td>Bridgeen, R.</td>
<td>Taking distributed coding seriously</td>
<td>115</td>
</tr>
<tr>
<td>Bullock, D. and Contreras-Vidal, J. L.</td>
<td>Adaptive behavioral phenotypes enabled by spinal interneuron circuits: Making sense the Darwinian way</td>
<td>115</td>
</tr>
<tr>
<td>Burgess, P. R.</td>
<td>Equilibrium points and sensory templates</td>
<td>118</td>
</tr>
<tr>
<td>Burke, D.</td>
<td>Movement programs in the spinal cord</td>
<td>120</td>
</tr>
</tbody>
</table>

© Cambridge University Press
Contents

Cary, D. P. and Servos, P. – Is "attention" necessary for visuomotor transformations? 121
Cavallari, P. – From neuron to hypothesis 121
Cavanagh, P. R., Simonneau, G. G. and Ufbrecht, J. S. – Posture and gait in diabetic distal symmetrical polyneuropathy 122
Clark, F. J. – How accurately can we perceive the positions of our limbs? 123
Clarke, T. L. – Mathematics is a useful guide to brain function 124
Colby, C. L., Duhamel, J-R. and Goldberg, M. E. – Posterior parietal cortex and retinocentric space 125
Connolly, C. I. – A robotics perspective on motor programs and path planning 126
Corrado, P. J. and Bevan, L. – Successive approximation in targeted movement: An alternative hypothesis 127
Dawson, M. R. W. – FINST's tag-assignment and the parietal gazetteer 129
Dean, J. – Is equilibrium-point control all there is to coding movement and do insects do it, too? 129
Dietz, V. – Control of natural movements: Interaction of various neural mechanisms 130
Duyens, J. and Gielen, C. C. A. M. – Spinal integration: From reflexes to perception 131
Eagleman, D. and Carey, D. P. – Connectionist networks do not model brain function 132
Feldman, A. G. – Fundamentals of motor control, kinesthesia and spinal neurons: In search of a theory 133
Flanders, M. and Soechting, J. F. – Network magic 136
Frolov, A. A. and Biryukova, E. V. – Adaptive neural networks organize muscular activity to generate equilibrium trajectories 137
Fuchs, A. F., Ling, L., Kaneko, C. R. S. and Robinson, F. R. – Network simulations and single-neuron behavior: The case for keeping the bath water 138
Fuster, J. M. – Brain systems have a way of reconciling "opposite" views of neural processing; the motor system is no exception 139
Gandevia, S. C. – How complex is a simple arm movement? 141
Gilbert, P. F. C. and Yeo, C. H. – Cerebellar function: On-line control and learning 141
Gitzler, S. – Spinal movement primitives and motor programs: A necessary concept for motor control 142
Graft, J. W. – Area LIP: Three-dimensional space and visual to oculomotor transformation 143
Goodale, M. A. and Jakobson, L. S. – Action systems in the posterior parietal cortex 145
Gordon, A. M. and Inhoff, A. W. – Intermittent use of feedback during movement phase transitions and during the updating of internal models 146
Gottlieb, G. L. – Kinematics is only a (good) start 147
Graziano, M. S. and Gross, C. G. – Somatospecifically organized maps of near visual space exist 148
Grothstein, P. – Information processing styles and strategies: Directed movement, neural networks, space and individuality 148
Gutman, S. R. and Gottlieb, G. L. – Virtual trajectory as a solution of the inverse dynamic problem 150
Hallett, M. – Operations of the motor system 152
Hamm, T. M. and McCurdy, M. L. – Making sense of recurrent inhibition: Comparisons of circuit organization with function 154
Hasan, Z. – Is stiffness the mainspring of posture and movement? 154
Heuer, H. – Computations, neural networks and the limits of human understanding 156
Horak, F. B., Shupert, C. and Burleigh, A. – Implications for human motor control 156
Iasenke, R. – Converging approaches to the problem of single-cell recording 158
Ingle, D. – Spatial short-term memory: Evolutionary perspectives and discoveries from split-brain studies 158
Ioffe, M. E. – The necessity of a complex approach in studying brain mechanisms of movement 160
Ito, M. – Function versus synapse: Still a missing link? 161
Jaeger, D. – Toward an integration of neurophysiology, performance analysis, connectionism and compartmental modeling 161
Kalaska, J. F. and Crammond, D. J. – Neurophysiological mechanisms for the planning of movement and for spatial representations 162
Kirkwood, P. A. – The identification of corticomotoneuronal connections 164
Kuo, A. D. and Zajac, F. E. – What is the nature of the feedforward component in motor control? 165
Kupfermann, I. – Neural networks: They do not have to be complex to be complex 165
La Canyon, F. – Bellex control of mechanical interaction in man 166
Lan, N. and Crago, P. E. – Equilibrium-point hypothesis, minimum effort control strategy and the triphasic muscle activation pattern 167
Latah, M. L. – Are we able to preserve a motor command in the changing environment? 169
Lemon, R. – The meaning for movement of activity in single cortical output neurons 171
Levine, D. S. – Toward a genuine theoretical neuroscience of motor control 172
Loeb, G. E. – Past the equilibrium point 172
Lundberg, A. – To what extent are brain commands for movements mediated by spinal interneurons? 173
Contents

MacKay, W. A. and Biehle, A. – The single neuron is not for hiding 174
Masson, G. and Pullious, J. – Locomotion, oscillating dynamic systems and stiffness regulation by the basal ganglia 176
McCollum, G. – Global organizations: Movement and spinal 177
Morasso, P. and Saagniatt, V. – Equilibrium point and self-organization 179
Neilson, P. D. and Neilson, M.D. – Adaptive model theory 180
Nichols, T. B. – Stiffness regulation revisited 181
Ostry, D. J. and Flanagan, J. R. – Aspects of the equilibrium-point hypothesis (a model for multijoint movements 182
Paillard, J. – Between perception and reflex: A role for contextual kinaesthetic information 184
Phillips, J. G., Jones, D. L., Bradshaw, J. L. and Insel, B. – Levels of explanation and other available clinical models for motor theory 185
Pouget, A. & Sejnowski, T. J. – A distributed common reference frame for egocentric space in the posterior parietal cortex 185
Pratt, C. A. and Macpherson, J. M. – The many disguises of “sense”: The need for multitask studies of multiarticular movements 186
Prochazka, A. – A vital clue: Kinesthetic input is greatly enhanced in sensorimotor “vigilance” 187
Proctor, B. W. and Franz, E. A. – Is the posterior parietal cortex the site for sensorimotor transformation? Cross-validation from studies of stimulus-response compatibility 188
Quinlan, P. – Real space in the head? 189
Rager, J. E. – There is much information in neural network unit activations 190
Ross, H. E. – Command signals and the perception of force, weight and mass 191
Rudomin, P. – Presynaptic inhibition and information transmission in neuronal populations 191
Schieppati, M. – Selection of task-related motor output through spinal interneurons 192
Schwarz, G. and Pouget, A. – Signals, brains and explanation 193
Seltzer, B. – An anatomy of parallel distributed processing 194
Smeets, J. B. J. – What do fast goal-directed movements teach us about equilibrium-point control? 194
Smith, A. M. – Can the inferior olive both excite and inhibit Purkinje cells? 195
Stein, J. F. – The role of the cerebellum in calibrating feedforward control 196
Stein, R. B. – Varying the invariants of movement 197
Summers, J. J. – The demise of the motor program 198
Tanji, J. – Cortical area-specific activity not yet found? 198
Thompson, R. F. – The cerebellum and memory 199
Tsuda, I. – Nonlinear dynamical systems theory and engineering neural network: Can each afford a plausible interpretation of “how” and “what”? 200
Van Gisbergen, J. A.M. and Duy sens, J. – Coordinate transformations in sensorimotor control: Persisting issues 201
Van Ingen Schenau, G. J., Beek, P. J. and Bootisma, R. J. – Is position information alone sufficient for the control of external forces? 202
Winters, J. M. and Mollison, P. – Synthesized neural/biochemical models used for realistic 3-D tasks are more likely to provide answers 203

Authors’ Responses

Gandevia, S. C. and Burke, D. – Afferent feedback, central programming and motor commands 213
McCrea, D. A. – Spinal interneuronal connections: Out of the dark comes a ray of hope 217
Robinson, D. A. – How far into brain function can neural networks take us? 221
Bloedel, J. R. – Concepts of cerebellar integration: Still more questions than answers 231
Fetz, E. E. – Saving the baby: Toward a meaningful reincarnation of single-unit data 236
Stein, J. F. – Real spatial maps? 240

References 243
Index 275