Formation of the microcolonies on surfaces is an important bacterial survival strategy. These biofilms occur on both inert and living systems, making them important to a wide range of scientific disciplines.

This book first provides an analysis of the chemical, ecological and physical processes involved in the development of biofilms and their interactions with surfaces.

The next section deals with biofilms on non-living surfaces. Biofilms have important engineering implications, such as in mining industries, the corrosion of pipelines and pure and waste water industries. They also have medical significance when associated with the mouth, urinary tract and urogenital tract. In addition, they form in plant root systems and in animals, for example in the ruminant digestive tract, and so are agriculturally important. The final section examines these interactions with living surfaces.
PLANT AND MICROBIAL BIOTECHNOLOGY RESEARCH SERIES: 5
Series Editor: James Lynch

Microbial Biofilms
PLANT AND MICROBIAL BIOTECHNOLOGY RESEARCH SERIES
Series Editor: James Lynch

Titles in the series
1. Plant Protein Engineering
 Edited by P. R. Shear and S. Gutteridge
2. Release of Genetically Engineered and Other Microorganisms
 Edited by J. C. Fry and M. J. Day
3. Transformation of Plants and Soil Microorganisms
 Edited by K. Wang, A. Herrera-Estrella and M. Van Montagu
4. Biological Control: Benefits and Risks
 Edited by H. M. T. Hokkanen and J. M. Lynch
5. Microbial Biofilms
 Edited by H. M. Lappin-Scott and J. W. Costerton
Microbial Biofilms

Edited by

Hilary M. Lappin-Scott
University of Exeter

and

J. William Costerton
Montana State University
Contents

List of Contributors ix
Series Preface xiii

Introduction to Microbial Biofilms
J. William Costerton and Hilary Lappin-Scott 1

Part I Structure, Physiology and Ecology of Biofilms

1 Growth of Microorganisms on Surfaces
 Darren R. Kerber, John R. Lawrence, Hilary M. Lappin-Scott and J. William Costerton 15
2 Dynamics of Bacterial Biofilm Formation
 Melanie G. Brading, Tanya Jass and Hilary M. Lappin-Scott 46
3 Cultivation and Study of Biofilm Communities
 Douglas E. Caldwell 64
4 Genetic Responses of Bacteria at Surfaces
 Amanda E. Goodman and Kevin C. Marshall 80
5 Biochemical Reactions and the Establishment of Gradients within Biofilms
 Julian W. T. Wimpenny and Sarah Kimminnent 99
6 Mechanisms of the Protection of Bacterial Biofilms from Antimicrobial Agents
 Peter Gilbert and Michael R. W. Brown 118

Part II Biofilms and Inert Surfaces

7 Biofilm Development in Purified Water Systems
 Marc W. Mittelman 133
8 Mineralized Bacterial Biofilms in Sulphide Tailings and in Acid Mine Drainage Systems
 Gordon Southam, F. Grant Ferris and Terrance J. Beveridge 148
9 Biofilms and Microbially Influenced Corrosion
 W. Allan Hamilton 171
10 Microbial Consortia in Industrial Wastewater Treatment
 R. Cam Wynyard and Kevin J. Kennedy 183
11 Heterogeneous Mosaic Biofilm – A Haven for Waterborne Pathogens
 James T. Walker, Craig W. Mackerness, Julie Rogers and C. William Keenell 196
CONTENTS

Part III Biofilms on the Surfaces of Living Cells

12 **The Rhizosphere as a Biofilm**
David Pearce, Michael J. Bazin and James M. Lynch

13 **Biofilms of the Ruminant Digestive Tract**
K.-J. Cheng, Tim A. McAllister and J. William Costerton

14 **The Immune Response to Bacterial Biofilms**
Niels Høiby, Anders Fonseca, Elisabeth T. Jensen, Helle K. Johansen, Gitte Kronborg,
Seon S. Pedersen, Taijana Presterl and Arsalan Kharazmi

15 **Bacterial Biofilms in the Hiliary System**
Joseph J. Y. Sung and Joseph W. C. Leung

16 **Biofilm Associated Urinary Tract Infections**
Robert J. C. McLean, J. Curtis Nickel and Merle E. Olson

17 **The Role of the Urogenital Flora in Probiotics**
Gregor Reid and Andreas W. Bruce

18 **Dental Plaque**
Philip D. Marsh

Index
Contributors

M. J. Bazin
Division of Life Sciences
King’s College
Campden Hill Road
Kennington
London W8 7AH

T. J. Beveridge
Department of Microbiology
College of Biological Science
University of Guelph
Guelph
Ontario N1G 2W1
Canada

M. G. Braden
Department of Biological Sciences
University of Exeter
Exeter EX4 4PS

M. R. W. Brown
Department of Pharmaceutical Sciences
Aston University
Birmingham B4 7ET

A. W. Bruce
Division of Urology
Department of Surgery
University of Toronto
Toronto
Ontario M5G 2C4
Canada

D. E. Caldwell
Department of Applied Microbiology and Food Science
University of Saskatchewan
Saskatoon
Saskatchewan S7N 0W9
Canada

K.-J. Cheng
Research Station
Agriculture Canada
Lethbridge
Alberta T1J 4B1
Canada

J. W. Costerton
Center for Biofilm Engineering
Montana State University
Bozeman
Montana 59717
USA

F. G. Ferris
Department of Geology
Earth Sciences Centre
University of Toronto
22 Rossel Street
Toronto
Ontario M5S 3B1
Canada

A. Fomsgaard
Department of Clinical Microbiology 7806
Hvidovre Hospital
Tangenvej 20
DK-2200 Copenhagen N
Denmark

P. Gilbert
Department of Pharmacy
University of Manchester
Manchester M13 9PL

A. E. Goodman
School of Microbiology and Immunology
University of New South Wales
PO Box 1
Kennington
NSW 2033
Australia
x CONTRIBUTORS

W. A. Hamilton
Department of Molecular and Cell Biology
Murdoch College
University of Aberdeen
Aberdeen AB9 1AS

N. Haiby
Department of Clinical Microbiology 7806
Righospitalet
Tagensvej 20
DK-2200 Copenhagen N
Denmark

J. Jass
Department of Biological Sciences
University of Exeter
Exeter EX4 4PS

E. T. Jensen
Department of Clinical Microbiology 7806
Righospitalet
Tagensvej 20
DK-2200 Copenhagen N
Denmark

H. K. Johansen
Department of Clinical Microbiology 7806
Righospitalet
Tagensvej 20
DK-2200 Copenhagen N

C. W. Keevil
Centre for Applied Microbiology and Research
Porton Down
Salisbury SP4 0JG

K. J. Kennedy
Department of Civil Engineering
University of Ottawa
Ontario K1N 6N5
Canada

A. Kharrazmi
Department of Clinical Microbiology 7806
Righospitalet
Tagensvej 20
DK-2200 Copenhagen N

S. Kinniment
School of Pharmacy and Applied Biology
University of Wales
PO Box 915
Cardiff CF1 3TL

D. R. Korber
Department of Applied Microbiology and Food Science
University of Saskatchewan
Saskatoon
Saskatchewan S7N 0W0
Canada

G. Kronborg
Department of Clinical Microbiology 7806
Righospitalet
Tagensvej 20
DK-2200 Copenhagen N

H. M. Lappin-Scott
Department of Biological Sciences
University of Exeter
Exeter EX4 4PS

J. R. Lawrence
National Hydrology Research Institute
11 Innovation Boulevard
Saskatoon
Saskatchewan S7N 3H5
Canada

J. W. C. Leung
Division of Gastroenterology
UC Davis Medical Center
45th & X Street, Fowler B, Building D
Sacramento CA 95817
USA

J. M. Lynch
School of Biological Sciences
University of Surrey
Guildford GU2 5XH

T. A. McAllister
Research Station, Agriculture Canada
Lehigh
Alberta T1J 4B1
Canada

R. J. C. McLean
Department of Biology
Southwest Texas State University
San Marcos
Texas 78666
USA

C. W. Mackerness
Centre for Applied Microbiology and Research
Porton Down
Salisbury
Wiltshire SP4 0JG
Contributors xi
Series Preface

Plant and Microbial Biotechnology

The primary concept of this series of books is to produce volumes covering the integration of plant and microbial biology in modern biotechnological science. Illustrations abound: for example, the development of plant molecular biology has been heavily dependent on the use of microbial vectors, and the growth of plant cells in culture has largely dawn on microbial fermentation technology. In both of these cases the understanding of microbial processes is now benefitting from the enormous investments made in plant biotechnology. It is interesting to note that many educational institutions are also beginning to see things in this way and are integrating departments previously separated by artificial boundaries.

Many definitions have been proposed for biotechnology but the only one which has specifically defined environmental biotechnology is that of the European Federation of Biotechnology as The specific application of biotechnology to the management of environmental problems, including waste treatment, pollution control and integration with non-biological technologies. The study of microbial biofilms is clearly an excellent illustration of environmental biotechnology. The manipulation and control of biofilms is of great interest to industries, including agriculture, chemicals and healthcare.

One of the leaders in the study of biofilms has been Bill Costerton, especially in his early studies when he produced superb electron micrographs to demonstrate the fascinating microbial assemblages which developed in biofilms. However, he rapidly proceeded to demonstrate important physiological functions which occurred in these interesting layers. In 1986, Hilary Lappin-Scott joined him to work partly in Cambridge and partly in Calgary on the biofilms associated with oil wells, so starting a long and productive association. Hilary went on to the University of Exeter in 1990 to create a research group on biofilms which is proving to have substantive inputs in a range of environmental and industrial fields. I had known Hilary since her days as a research student at the University of Warwick and found myself talking to her about biofilms on more than one occasion when we were both warming-up at the start of London marathons! I was delighted when Hilary said that she would be prepared to contribute a volume to the series with Bill Costerton. They have produced a textbook which covers not only the fundamentals of this important subject, but also provides a range of diverse applications.

Jim Lynch

xii