Index

abbreviations, xiii
age, brain MRI, 9
alcohol abuse
and psychiatric disorder, MRI, 10
SPET studies, 97–8
Alzheimer’s disease
apoE gene, 168
APP gene, ISHH, 165–8
fMRI studies, 133
vs normal subjects, FDG-PET images, 53
SPET studies, 93–4, 118–19
amphetamine, release of dopamines, 67, 154
anxiety states, neurotransmitters, 119–20
apomorphine, effects on regional glucose metabolism, 153
auditory cortex
cortical activation mapping, 131–3
processing, image fusion, 40
auditory hallucinations, 149
benzamides, iodinated radioligands, 68–9, 75–6, 113–17
benzodiazepine, receptor ligand iomazenil, 65–72
bipolar disorders, DWMHs, 19
blood oxygenation-level dependent contrast imaging (BOLD), 126–7
brain, normal, MRI, age and other factors, 8–9
brain abnormality and injury, magnetic resonance imaging, 9–19
brain volume, MRI, 14, 18
Broca’s area, auditory hallucinations, 149
[18F]–bromolomsuride, schizophrenia, PET study, 116
caudate volume, major affective disorders, 18
cerebral blood flow
and cerebral function, 81–2
regional CBF, functional imaging in schizophrenia, 141–55
SPET studies, 59–60, 81–109
in vivo tracer techniques, 82–3
cerebrospinal fluid, T-1 and T-2 relaxation times, 5–6
[123I]I–CIT, monoamine transporter ligand, 74–6
cocaine, SPET studies, 97
cognitive activation, schizophrenia, 149–51
corpus callosum, schizophrenia, 16–17
cortical activation mapping, 128–36
auditory cortex and language, 131–3
memory, 133
motor cortex, 131
visual cortex, 129–31
CT scan
hypodensities, 18
integration with functional imaging, 41–3
dementia of Alzheimer’s type, PET and SPET studies, 118–19
depression
neurotransmitters, 119–20
pituitary enlargement, MRI, 18
SPET studies, 95–6
DNA hybridization see in situ hybridization histochemistry (ISHH)
dopamines, amphetamine release, 67, 154
drug abuse
brain MRI, 10
PET studies, 119
SPET studies, 96–8
echo-planar imaging (EPI), 125–6
ECT, brain changes, 10
education, brain MRI, 9
[123I]–epidepride, 116, 76
epilepsy
PET and SPET studies, 117–18
surgery, guidance by image fusion, 40
fast low angle shot (FLASH) and EPI, 127–8

© in this web service Cambridge University Press
www.cambridge.org
Index

FDG-PET images, 53, 142
flumazenil, 66, 71–2
\[^{18}F\]N-methylspiroperidol, dopamine receptor mapping, 97
frontal lobe, schizophrenia, 14–15
functional imaging, integration with anatomical imaging, 39–58
GABA-BDZ receptor imaging, 117–18
gene expression antisense manipulation, 164
flow diagram, 158
Huntington’s disease IT15, 168
quantitative changes, 166–7
glucose metabolism, rCMRglu, PET techniques in schizophrenia, 141–56
grey matter, T-1 and T-2 relaxation times, 5–6
haloperidol, striatal metabolism in schizophrenia, 153
hemianopia, fMRI, 134
hippocampal distribution of synaptophysin, 160–2
Huntington’s disease, IT15 gene expression, 168
image fusion, 39–58
applications: activation task profiles, 52–4; activity localization, 54; functional dissection, 51–2
development of image data sets, 45–51
examples, 40
future developments, 54–5
techniques, 43–5
image subtraction paradigms, 45–7
image warping, 44–6
\[^{123}I\]IMP (iodoamphetamine), 83–4, 86
in situ hybridization histochemistry (ISHH), 157–74
applications, 165–8
extensions, 163–4
limitations, 164–5
in vitro brain imaging, 157–74
intelligence, brain MRI, 9
iomazenil, benzodiazepine receptor ligand, 65–72
language, cortical activation mapping, 131–3
magnetic resonance imaging
blood oxygenation-level dependent contrast imaging (BOLD), 126–7
brain abnormality and injury, 9–10
clinical applications, 7–8
deep white matter hyperintensities (DWMHs), 19
echo-planar imaging (EPI), 125–6, 127–8
fast low angle shot (FLASH), 127–8
functional MRI: applications in psychiatric research, 135, 136;
confounding variance, 144–5; brain structure, 145–6; global rCBF, 144;
global rCMRglu, 145; and cortical activation mapping, 128–36
hyperintensities (UBOs), 18–19
image fusion, 41–3
importance in psychiatry, 7–8
integration with PET and SPET functional imaging, 39–58; development of image data sets, 45–51; techniques, 43–5
major affective disorders, 18–19
normal brain, 8–9
principles, 1–7, 125–6
research applications, 8
schizophrenia, 11–17, 28–9; fMRI, 134, 135
subject selection, 8–9
T-1 and T-2 relaxation times, 5–6, 125–6
volumetric analysis, 7
memory, cortical activation mapping, 133
\[^{14}C\]N-methylspiperone, PET in schizophrenia, 116
\[^{18}F\]N-methylspiroperidol, dopamine receptor mapping, 97
monoamine transporter ligand, \[^{123}I\]β-CIT, 74
neuroleptics, brain changes, 10
neuroreceptors, SPET studies, 61–76, 111–24
obsessive–compulsive disorder
5-HT receptors, 120
fMRI studies, 134
SPET studies, 94
Parkinson’s disease, SPET studies, 75
pharmacological challenge studies, PET rCBF studies, 153–4
pituitary enlargement, in depression, 18

positron emission tomography

advantages of SPECT over PET, 60

image fusion with CT, MRI, 41–3

neuroreceptor studies, 117–24; principles, 112–17

in schizophrenia, 141–56

psychomotor poverty syndrome, 148

psychotropic drugs, receptor binding, SPET quantitation, 63–73

quadrantanopia, fMRI, 134

[11C]-raclopride, schizophrenia, PET study, 116

radioligands

PET and SPET, list, 113 properties, 112

see also named ligands

radiotracers, regional washout, factors and rates, 64

reality distortion syndrome, 148

receptors see neuroreceptors

ROI activation task profiles, 52–4

RTI-55 ([123I]~_CIT), 74–6

rubbersheeting, 44–5

schizophrenia

basal ganglia, 16
cerebral activity: and symptom expression, 143; task performance, 144
corpus callosum, 16–17
event-related brain potentials, P300 responses, 26–7

frontal lobe, 14–15

functional connectivity, 151–3

genetics, 25–38; post-mortem studies, 28;

putative electrophysiological and neurophysiological markers, 26–9;

structural abnormalities, 29–33

MRI, 11–17, 28–9; vs normal controls, 12–13; structural abnormalities, 29–33

MRI functional imaging, 134, 135

neuroreceptor imaging, SPET studies, 89–93, 114–17

PET functional imaging, 141–56;
cognitive activation, 149–51; functional connectivity, 151–3; pharmacological challenge studies, 153–4; regional cerebral blood flow, 141–55; regional glucose metabolism, 141–56

temporal lobe, 15–16

ventricular size, 11–14

WCST, test of cognitive function, 149–51, 154

single photon emission tomography, image fusion with CT, MRI, 41–3

single photon emission tomography blood flow studies, 81–109, 142

analysis of data, 85–9; demographic variables, 88; resting state and activation studies, 88–9

applications in psychiatric disorders, 89–99; Alzheimer’s disease, 93–4;

obsessive–compulsive disorder, 94;

schizophrenia, 89–90

equipment, 85

tracers, 83–5; list, 86

single photon emission tomography receptor studies, 61–76

advantages/disadvantages, 74
cerebral blood flow vs receptor studies, 59–60
drug receptor binding, 63–73

kinetic modelling, 69–70

neuroreceptor agents, characteristics, 73–6

outcome studies, 61

principles, 111–17

radiotracer continuous infusions, 70–3

standard approaches, 61–3

sleep deprivation studies, image fusion, 40, 52

social class, brain MRI, 9

speech discrimination study, PET, 41–3, 48–9

striatal metabolism in schizophrenia, regional glucose metabolism, 153

striatal/occipital ratio, SPET studies, 62–4

synaptophysin, hippocampal distribution, 160–2

[99mTc]-ECD, rCBF measurements, SPET tracer, 84, 86

[99mTc]-HMPAO rCBF measurements, 84, 86; cocaine abuse, 97

SPET studies, 142

ventricular brain ratio, ventricular size, 11

ventricular enlargement, major affective disorders, 18
Index

visual cortex, cortical activation mapping, 129–31

\(^{133}\text{Xe},\) SPET tracer, 86, 88
in alcohol abuse, 97

white matter, T-1 and T-2 relaxation times, 5–6